Decoding the impact of emotions: machine learning insights on user interests in social networks
Abstract
Full Text:
PDFReferences
A. Abdel-Hafez, Y. Xu, A Survey of User Modelling in Social Media Websites, Computer and Information Science 30 (2022), no. 3, 5-20.
N. Reimann, Twitter Hemorrhaging Its Most Active Users, Report Says, https://www.forbes.com/sites/nicholasreimann/2022/10/25/twitter-hemorrhaging-its-mostactive-users-report-says/?sh=e34ed5e6e5e1
Statista Search Department, Countries with the most X/Twitter users 2023. Statista, https://www.statista.com/statistics/242606/number-of-active-twitter-users-in-selectedcountries
(Accessed September 13th, 2023.)
T.S. Sai Kumar, K. Arunaggiri Pandian, S. Thabasum Aara, K. Nagendra Pandian, A Reliable Technique for Sentiment Analysis on Tweets via Machine Learning and BERT, Asian Conference on Innovation in Technology (ASIANCON) 27 August (2021).
R. Abbasi, G. Rehman, J. Lee, F. M. Riaz, B. Luo, Discovering temporal user interest on twitter by using semantic based dynamic interest finding model (TUT), 2017 IEEE 2nd Information Technology, Networking, Electronic and Automation Control Conference (ITNEC), Chengdu, China, 2017, 743-747. DOI:10.1109/ITNEC.2017.8284832
N. Nimita Mangal, S. Sartaj Kanwar, R. Rajdeep Niyogi, Prediction of Twitter Users' Interest Based on Tweets, In: (J. Mandal, S. Satapathy, M. Sanyal, V. Bhateja (Eds.)) Proceedings of the First International Conference on Intelligent Computing and Communication. Advances in Intelligent Systems and Computing, 458 (2016), pp. 167-175, Springer, Singapore. DOI:10.1007/978-981-10-2035-3_18
Ma. Cebral-Loureda, A. Hernandez-Baqueiro, E. Tamés-Munoz, A text mining analysis of human flourishing on Twitter, Scientific reports 13 (2023), Article number 3403.
A.P. Logan, P.M. LaCasse, B. Lunday, Social network analysis of Twitter interactions: a directed multilayer network approach, Soc. Netw. Anal. Min. 13 (2023), Article number 65.
M.A. Al-Hagery, M.A.Alassaf, F.M. Al-kharboush, Exploration of the best performance method of emotions classification for arabic tweets, Indonesian Journal of Electrical Engineering and Computer Science 19 (2020), no. 2, Article number 1010.
M. Abdullah, M. AlMasawa, I. Makki, M. Alsolmi, S. Mahrous, Emotions extraction from Arabic tweets, International Journal of Computers and Applications 42 (2020), no. 7, 661-675.
M.N.M. Shelke, Approaches of Emotion Detection from Text, International Journal of Computer Science and Information Technology 2 (2014), 123-128.
S.B. Kotsiantis, Supervised Machine Learning: A Review of Classification, Informatica (Slovenia) 31 (2007), 249-268.
I.D. Wood, S. Ruder, Emoji as Emotion Tags for Tweets, Proceedings of LREC, Workshop, Emotion and Sentiment Analysis (2016), 76-79.
P. Ekman, An argument for basic emotions, Cognition and Emotion 6 (1992), no. 3-4, 169-200.
M. Ikonomakis, S. Kotsiantis, V. Tampakas, Text Classification Using Machine Learning Techniques, WSEAS TRANSACTIONS on COMPUTERS 4 (2005), 966-074.
sklearn.svm.LinearSVC - scikit-learn 0.20.3 documentation. https://scikitlearn.org/stable/modules/generated/sklearn.svm.LinearSVC.html
sklearn.naive-bayes.MultinomialNB - scikit-learn 0.20.3 documentation. https://scikitlearn.org/stable/modules/generated/sklearn.naive-bayes.MultinomialNB.html
D. Kim, D. Seo, S. Cho, P. Kang, Multi-co-training for document classification using various document representations: TF-IDF, LDA, and Doc2Vec, Information Sciences 477 (2019), 15-29.
DOI: https://doi.org/10.52846/ami.v50i2.1874