Lower and upper bounds of integral mean estimate for polar derivative of a polynomial
Abstract
If p(z) is a polynomial of degree n having all its zeros in $|z|\leq k$, $k\geq1$, then for $r\geq 1$, Aziz [J. Approx. Theory, 55 (1988), 232-239] proved
\begin{equation*}
\left\lbrace\int\limits_{0}^{2\pi}|1+k^ne^{i\theta}|^{r}d\theta\right\rbrace^{\frac{1}{r}}\max_{|z|=1}|p'(z)|\geq n\left\lbrace\int\limits_{0}^{2\pi}|p(e^{i\theta})|^{r}d\theta\right\rbrace^{\frac{1}{r}},
\end{equation*}
whereas, Devi et al. [Note Mat., 41 (2021), 19{29] proved that if p(z) is a polynomial of degree n having no zero in |z| < k; k 1, then for r > 0,
\begin{equation*}
k^{n}n\left\lbrace\int\limits_{0}^{2\pi}|p(e^{i\theta})|^{r}d\theta\right\rbrace^{\frac{1}{r}} \leq \left\lbrace\int\limits_{0}^{2\pi}|e^{i\theta}+k^n|^{r}d\theta\right\rbrace^{\frac{1}{r}}\left\{n\max_{|z|=1}|p(z)|-\max_{|z|=1}|p'(z)|\right\},
\end{equation*}
provided jp0(z)j and jq0(z)j attain their maxima at the same point on jzj = 1, where $q(z)=z^{n}\overline{p\left(\frac{1}{\bar z}\right)}$.
In this paper, we not only obtain improved extensions of the above inequalities into polar derivative by involving the leading coecient and the constant term of the polynomial but also give generalized integral extension of inequalities on polar derivative recently proved by Singh et al. [Complex Anal. Synerg., 9:3 (2023), 1-8].
Full Text:
PDFReferences
V. V. Arestov, On inequalities for trigonometric polynomials and their derivative, Izv. Akad. Nauk. SSSR. Ser. Math. 45 (1981), no. 1, 3-22.
A. Aziz, Integral mean estimates for polynomials with restricted zeros, J. Approx. Theory 55 (1988), 232-239.
A. Aziz, N.A. Rather, A refinement of a theorem of Paul Turán concerning polynomial, J. Math. Inequal. Appl. 1 (1998), 231-238.
A. Aziz, N. A. Rather, Inequalities for the derivative of a polynomial with restricted zeros, Nonlinear Funct. Anal. Appl. 14 (2009), 13-24.
S. Bernstein, Sur l' ordre de la meilleure approximation des fonctions continues par des polynômes de degré donné, Mem. Acad. R. Belg. 4 (1912), 1-103.
P. Borwein, T. Erdélyi, Polynomials and Polynomial Inequalities, Springer-Verlag, New York, 1995.
J.W. Brown, R. V. Churchill, Complex Variables and Applications, McGraw-Hill, New York, NY, 1948.
E.W. Cheney, Introduction to Approximation Theory, McGraw-Hill, New York, NY, 1966.
N.G. De-Bruijn, Inequalities concerning polynomials in the complex domain, Nederl. Akad. Wetench. Proc. Ser. A 50 (1947), 1265-1272; Indag. Math. 9 (1947), 591-598.
K.B. Devi, K. Krishnadas, B. Chanam, Lr inequalities for the derivative of a polynomial, Note Mat. 41 (2021), no. 2, 19-29.
R.A. DeVore, G.G. Lorentz, Constructive Approximation, Springer-Verlag, Berlin, 1993.
R.B. Gardner, N.K. Govil, G.V. Milovanović, Extremal Problems and Inequalities of Markov-Bernstein Type for Algebraic Polynomials, Mathematical Analysis and Its Applications, Elsevier/Academic Press, London, 2022.
N.K. Govil, On a theorem of S. Bernstein, Proc. Nat. Acad. Sci. 50 (1980), 50-52.
N.K. Govil, On the derivative of a polynomial, Proc. Amer. Math. Soc. 41 (1973), 543-546.
N.K. Govil, Q.I. Rahman, Functions of exponential type not vanishing in a half-plane and related polynomials, Trans. Amer. Math. Soc. 137 (1969), 501-517.
E. Hille, Analytic Function Theory, Vol. 2, Ginn. and Company, New York, Toronto, 1962.
V.I. Ivanov, Some extremal properties of polynomials and inverse inequalities in approximation theory, Trudy Mat. Inst. Steklov 145 (1979), 79-110.
P.D. Lax, Proof of a conjecture of P. Erdös on the derivative of a polynomial, Bull. Amer. Math. Soc. 50 (1944), 509-513.
G.G. Lorentz, Approximation of Functions, Holt, Rinehart and Winston, New York, 1966.
M.A. Malik, An integral mean estimates for polynomials, Proc. Amer. Math. Soc. 91 (1984), no. 2, 281-284.
M.A. Malik, On the derivative of a polynomial, J. Lond. Math. Soc. 1 (1969), no. 2, 57-60.
M. Marden, Geometry of Polynomials, Mathematical Surveys, Vol. 3, American Mathematical Society, Providence, 1966.
A.A. Markov, On a problem of D. I. Mendeleev, Zap. Imp. Akad. Nauk, St. Petersburg 62 (1889), 1-24.
D. Mendeleev, Investigations of Aqueous Solutions Based on Specific Gravity, St.Petersberg, 1887 (Russian).
G. V. Milovanović, D. S. Mitrinović, Th.M. Rassias, Topics in Polynomials, Extremal Problems, Inequlities, Zeros, World Scienti_c, Singapore, 1994.
A. Mir, D. Breaz, Bernstein and Turán-type inequalities for a polynomial with constraints on its zeros, RACSAM 115 (2021), Art. 124.
G. Pólya, G. Szegö, Problems and Theorems in Analysis, Vol. 2, Springer-Verlag, New York/Heidelberg, Berlin, 1976.
Q.I. Rahman, G. Schmeisser, Analytic Theory of Polynomials, Oxford University Press, Oxford, 2002.
Q.I. Rahman, G. Schmeisser, Lp inequalities for polynomials, J. Approx. Theory 53 (1988), 26-32.
N.A. Rather, F. A. Bhat, Inequalities for the polar derivative of a polynomial, Appl. Math. E-Notes 17 (2017), 231-241.
W. Rudin, Real and Complex Analysis, Tata McGraw-Hill Publishing Company, 1977.
T.B. Singh, B. Chanam, Generalizations and sharpenings of certain Bernstein and Turán types of inequalities for the polar derivative of a polynomial, J. Math. Inequal. 15 (2021), 1663-1675.
T.B. Singh, R. Soraisam, B. Chanam, Sharpening of Turán type inequalities for polar derivative of a polynomial, Complex Anal. Synerg. 9 (2023), no. 3, 1-8.
N.K. Singha, B. Chanam, On Turán-type integral mean estimate of a polynomial, Math. Found. Comput. (2023). DOI:10.3934/mfc.2023048
A.E. Taylor, Introduction to Functional Analysis, John Wiley and Sons, New York, 1958.
S.A. Telyakovskii, Research in the theory of approximation of functions at the mathematical institute of the academy of sciences, Trudi Mat. Inst. Steklov 182 (1988), 128-179; English trans. in: Proc. Steklov Inst. Math. (1990), 141-197.
P. Turán, Über die ableitung von polynomen, Compositio Math. 7 (1939), 89-95.
A. Zygmund, A remark on conjugate series, Proc. London Math. Soc. 34 (1932), 392-400.
DOI: https://doi.org/10.52846/ami.v51i2.1880