Infinity weak solutions for a nonlocal Fractional problem with different boundary conditions
Abstract
Full Text:
PDFReferences
G. Abdeljabbar, Multiplicity of Nontrivial Solutions of a Class of Fractional -Laplacian Problem, Zeitschrift fur Analysis und ihre Anwendungen 34 (2015), no. 3, 309{319.
R.A. Adams, J.F. Fournier, Sobolev spaces, Second edition, Elsevier/Academic Press, Amsterdam, 2003.
A. Alberico, A. Cianchi, L. Pick, L. Slavikova, Boundedness of functions in fractional Orlicz-Sobolev spaces, Nonlinear Analysis 230 (2023), 113231.
K.B. Ali, M. Hsini, K. Kefi, N.T. Chung, On a nonlocal fractional p(.,.)-Laplacian problem with competing nonlinearities, Complex Analysis and Operator Theory 13 (2019), no. 3, 1377{1399.
A. Ambrosetti, J.Garcia Azorero, I. Peral, Multiplicity results for some nonlinear elliptic equations, J. Funct. Anal. 137 (1996), 219{242.
A. Ambrosetti, H. Brezis, G. Cerami, Combined effects of concave and convex nonlinearities in some elliptic problems, J. Funct. Anal. 122 (1994), 519{543.
E. Arhrrabi, H. El-Houari, Fractional Sobolev space: Study of Kirchhoff-Schrödinger systems with singular nonlinearity, CUBO, A Mathematical Journal 26 (2024), no. 3, 407{430.
E. Azroul, A. Benkirane, M. Srati, M. Shimi, Existence of solutions for a nonlocal Kirchhoff type problem in Fractional Orlicz-Sobolev spaces, arXiv preprint arXiv:1901.05216, (2019).
E. Azroul, A. Benkirane, M. Srati, Nonlocal eigenvalue type problem in fractional Orlicz-Sobolev space, Advances in Operator Theory 5 (2020), no. 4, 1599{1617.
E. Azroul, A. Benkirane, M. Srati, Existence of solutions for a non-local type problem in Fractional Orlicz Sobolev Spaces, Adv. Oper. Theory 5 (2020), 1350{1375.
A. Bahrouni, S. Bahrouni, M. Xiang, On a class of nonvariational problems in fractional Orlicz-Sobolev spaces, Nonlinear Analysis 190 (2020), 111595.
S. Bahrouni, A.M. Salort, Neumann and Robin type boundary conditions in Fractional Orlicz-Sobolev spaces, ESAIM: Control, Optimisation and Calculus of Variations 27 (2021), S15.
R. Biswas, S. Tiwari, Nehari manifold approach for fractional p(.)-Laplacian system involving concave-convex nonlinearities, Electronic J. of Di_erential Equations 2020 (2020), no. 98, 1{29.
G. Bonanno, G.M. Bisci, V. Radulescu, Existence of three solutions for a non-homogeneous Neumann problem through Orlicz-Sobolev spaces, Nonlinear Analysis: Theory, Methods & Applications 74 (2011), no. 14, 4785{4795.
G. Bonanno, G.M. Bisci, Infinitely many solutions for a boundary value problem with discontinuous nonlinearities, Boundary Value Problems 2009 (2009), Art. 670675, 1{20.
J.F. Bonder, A.M. Salort, Fractional order Orlicz-Sobolev Spaces, Journal of Functional Analysis 277 (2019), no. 2, 333{367.
J.F. Bonder, A. Salort, H. Vivas, Interior and up to the boundary regularity for the fractional g-Laplacian: the convex case, Nonlinear Analysis 223 (2022), Art. 113060.
A. Boumazourh, M. Srati, Leray-Schauder's solution for a nonlocal problem in a fractional Orlicz-Sobolev space, Moroccan J. of Pure and Appl. Anal. (MJPAA) 6 (2020), no. 1, 42-52.
L.S. Chadli, H. El-Houari, H. Moussa, Multiplicity of solutions for nonlocal parametric elliptic systems in fractional Orlicz-Sobolev spaces, J. of Elliptic and Parabolic Eq. 9 (2023), 1131{1164.
E. Colorado, I. Peral, Semilinear elliptic problems with mixed Dirichlet-Neumann boundary conditions, J. of Functional Analysis 199 (2003), no. 2, 468{507.
D.G. Costa, C.A. Magalhaes, Existence results for perturbations of the p-Laplacian, Nonlinear Analysis: Theory, Methods & Applications 24 (1995), no. 3, 409{418.
E.D. da Silva, M.L.M. Carvalho, J.V. Goncalves, C. Goulart, Critical quasilinear elliptic problems using concave-convex nonlinearities, Annali di Matematica Pura ed Applicata 198 (2019), no. 3, 693{726.
E. Di Nezza, G. Palatucci, E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bulletin des sciences math_ematiques 136 (2012), no. 5, 521{573.
S. Dipierro, X. Ros-Oton, E. Valdinoci, Nonlocal problems with Neumann boundary conditions, Revista Matematica Iberoamericana 33 (2017), no. 2, 377{416.
I. Ekeland, On the variational principle, Journal of Mathematical Analysis and Applications 47 (1974), no. 2, 324-353.
H. El-Houari, L.S. Chadli, H. Moussa, Existence of a solution to a nonlocal Schrödinger system problem in fractional modular spaces, Advances in Operator Theory 7 (2022), no. 1, 1{30.
H. El-Houari, M. Hicham, S. Kassimi, H. Sabiki, Fractional Musielak spaces: a class of nonlocal problem involving concave-convex nonlinearity, J. of Elliptic and Parabolic Eq. 10 (2024), 87{125.
H. El-Houari, L.S. Chadli, M. Hicham, Nehari manifold and fibering map approach for fractional ()-Laplacian Schrödinger system, SeMA Journal 81 (2024), 729{751.
H. El-Houari, L.S. Chadli, H. Moussa, Multiple solutions in fractional Orlicz-Sobolev Spaces for a class of nonlocal Kirchho_ systems, Filomat 38 (2024), no. 8, 2857{2875.
H. El-Houari, H. Moussa, L.S. Chadli, A class of elliptic inclusion in fractional Orlicz-Sobolev spaces, Complex Variables and Elliptic Equations 69 (2022), no. 5, 755{772.
H. El-Houari, L.S. Chadli, H. Moussa, A class of non local elliptic system in non reflexive fractional Orlicz-Sobolev spaces, Asian-European Journal of Mathematics 16 (2023), no. 7, 2350114 (2023).
H. El-Houari, H. Moussa, L.S. Chadli, Ground State Solutions for a Nonlocal System in Fractional Orlicz-Sobolev Spaces, International Journal of Differential Equations 2022 (2022), 1{16.
H. El-Houari, H. Sabiki, H. Moussa, On topological degree for pseudomonotone operators in fractional Orlicz-Sobolev spaces: study of positive solutions of non-local elliptic problems, Advances in Operator Theory 9 (2024), no. 2, Art. 16.
H. El-Houari, L.S. Chadli, H. Moussa, A weak solution to a non-local problem in fractional Orlicz-Sobolev spaces, Asia Pac. J. Math. 10 (2023), no. 2.
H. El-Houari, M. Hicham, H. Sabiki, Multiplicity and concentration properties of solutions for double-phase problem in fractional modular spaces, J. Elliptic Parabol. Equ. 10 (2024), 755{801.
H. El-Houari, H. Moussa, H. Sabiki, Fractional Musielak spaces: a class of non-local elliptic system involving generalized nonlinearity, Rendiconti del Circolo Matematico di Palermo Series 2 (2024), 1{26.
H. El-Houari, H. Moussa, H. Sabiki, Fractional Musielak spaces: study of nonlocal elliptic problem with Choquard-logarithmic nonlinearity, Complex Variables and Elliptic Equations (2024), 1-24.
H. El-Houari, H. Moussa, On a class of generalized Choquard system in fractional Orlicz-Sobolev Spaces, Journal of Mathematical Analysis and Applications 540 (2024), no. 1, 128563.
H. El-Houari, S. Hajar, H. Moussa, Multivalued Elliptic Inclusion in Fractional Orlicz-Sobolev Spaces, Complex Analysis and Operator Theory 18 (2024), no. 4, 94.
N. Fukagai, M. Ito, K. Narukawa, Quasilinear elliptic equations with slowly growing principal part and critical Orlicz-Sobolev nonlinear term, Proceedings of the Royal Society of Edinburgh Section A: Mathematics 139 (2009), no. 1, 73{106.
N. Fukagai, K. Narukawa, On the existence of multiple positive solutions of quasilinear elliptic eigenvalue problems, Annali di Matematica Pura ed Applicata 186 (2007), 539{564.
N. Fukagai, M. Ito, K. Narukawa, Positive solutions of quasilinear elliptic equations with critical Orlicz-Sobolev nonlinearity on R, Funkcial. Ekvac. 49 (2006), 235{267.
A. Ghanmi, K. Saoudi, The Nehari manifold for a singular elliptic equation involving the fractional Laplace operator, Fractional Differential Calculus 6 (2016), no. 2, 201{217.
A. Ghanmi, Nontrivial solutions for Kirchhoff-type problems involving the p(x)-Laplace operator, Rocky Mountain J. Math. 48 (2018), no. 4, 1145-1158.
M. Garcia-Huidobro, V.K. Le, R. Manasevich, K. Schmitt, On principal eigenvalues for quasilinear elliptic differential operators: an Orlicz-Sobolev space setting, Nonlinear Differential Equations and Applications NoDEA 6 (1999), no. 2, 207{225.
E.H. Hamza, L.S. Chadli, H. Moussa, Existence of ground state solutions of elliptic system in Fractional Orlicz-Sobolev Spaces, Results in Nonlinear Analysis 5 (2022), no. 2, 112{130.
H. El-houari, L.S. Chadli, H. Moussa, On a class of fractional Kirchhoff-Schrödinger system type, CUBO, A Mathematical Journal 26 (2024), no. 1, 53{73.
S. Heidarkhani, G. Caristi, M. Ferrara, Perturbed Kirchhoff-type Neumann problems in Orlicz-Sobolev spaces, Computers & Mathematics with Applications 71 (2016), no. 10, 2008{2019.
M.A. Krasnosel'skii, Y.B. Rutickii, Convex functions and Orlicz spaces, (Vol. 9), Groningen, Noordhoff, 1961.
A. Kristaly, M. Mihăilescu, V. Rădulescu, Two non-trivial solutions for a non-homogeneous Neumann problem: an Orlicz-Sobolev space setting, Proceedings of the Royal Society of Edinburgh Section A: Mathematics 139 (2009), no. 2, 367{379.
Q.J. Lou, Multiplicity of Positive Solutions for Kirchhoff Systems, Bulletin of the Malaysian Mathematical Sciences Society 43 (2020), no. 5, 3529{3556.
B. Ricceri, A general variational principle and some of its applications, Journal of Computational and Applied Mathematics 113 (2000), no. 1-2, 401{410.
A.M. Salort, Eigenvalues and minimizers for a non-standard growth non-local operator, Journal of Differential Equations 268 (2020), no. 9, 5413{5439.
DOI: https://doi.org/10.52846/ami.v52i1.1902