Ground state solutions for a Kirchhoff type equation involving p-biharmonic operator with exponential growth non-linearity
Abstract
In this article, we study the following non local weighted problem
$$g\big(\int_{B}(w(x)|\Delta u|^{\frac{N}{2}})dx\big)\Delta(w(x)|\Delta u|^{\frac{N}{2}-2} \Delta u) =|u|^{q-2}u +\ f(x,u) \quad\mbox{ in }\quad B, \quad u=\frac{\partial u}{\partial n}=0 \quad\mbox{ on } \quad\partial B,$$
where $B$ is the unit ball in $\mathbb{R}^{N}$ and $ w(x)$ is
a singular weight of logarithm type. The non-linearity is a combination of a reaction source
$f(x,u)$ which is critical in view of exponential inequality of Adams' type and a polynomial function.
The Kirchhoff function $g$ is positive and continuous. The energy function loses compactness in the critical case. To remedy this, we introduce a new asymptotic condition for non-linearity and go through an intermediate problem. Using the Nehari manifold method, the quantitative deformation lemma and results from degree theory, we establish the existence of a ground-state solution.
Full Text:
PDFReferences
I. Abid, S. Baraket, R. Jaidane, On a weighted elliptic equation of N-Kirchhoff type, Demonstratio Mathematica 55 (2022) 634-657. DOI.org/10.1515/dema-2022-0156
D. R. Adams, A sharp inequality of J. Moser for higher order derivatives, Annals of Math. 128 (1988), 385-398.
V. Alexiades, A.R. Elcrat, P.W. Schaefer, Existence theorems for some nonlinear fourthorder elliptic boundary value problems, Nonlinear Anal. 4 (1980), no. 4, 805-813.
C.O. Alves, F.J.S.A. Corrêa, T.F. Ma, Positive solutions for a quasilinear elliptic equation of Kirchhoff type, Comput. Math. Appl. 49 (2005), 85-93.
C.O. Alves, F.J.S.A. Corrêa, On existence of solutions for a class of problem involving a nonlinear operator, Comm. Appl. Nonlinear Anal. 8 (2001), 43-56.
S. Baraket, R. Jaidane, Non-autonomous weighted elliptic equations with double exponential growth, An. Șt. Univ. Ovidius Constanța 29 (2021), no. 3, 33-66.
M. Calanchi, B. Ruf, Trudinger-Moser type inequalities with logarithmic weights in dimension N, Nonlinear Analysis TMA 121 (2015), 403-411. DOI: 10.1016/j.na.2015.02.001
M. Calanchi, B. Ruf, F. Sani, Elliptic equations in dimension 2 with double exponential nonlinearities, NoDea Nonlinear Differ. Equ. Appl. 24 (2017), Art. 29.
R. Chetouane, R. Jaidane, Ground state solutions for weighted N-Laplacian problem with exponential nonlinear growth, Bull. Belg. Math. Soc. Simon Stevin 29 (2022), no. 1, 37-61.
C.P. Dănet, Two maximum principles for a nonlinear fourth order equation from thin plate theory, Electron. J. Qual. Theory Differ. Equ. 31 (2014), 1-9.
S. Deng, T. Hu, C. Tang, N-laplacian problems with critical double exponential nonlinearities, DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS 41 (2021), 987-1003.
P. Drabek, A. Kufner, F. Nicolosi, Quasilinear Elliptic Equations with Degenerations and Singularities, Walter de Gruyter, Berlin, 1997. DOI:10.1515/9783110804775
B. Dridi, R. Jaidane, R. Chetouene, Existence of Signed and Sign-Changing Solutions for Weighted Kirchhoff Problems with Critical Exponential Growth, Acta Applicandae Mathematicae (2023).
D.G. de Figueiredo, O.H. Miyagaki, B. Ruf, Elliptic equations in R2 with nonlinearities in the critical growth range, Calc. Var. Partial Differential Equations 3 (1995), no. 2, 139-153. DOI:10.1007/BF01205003.
B. Dridi, Elliptic problem involving logarithmic weight under exponential nonlinearities growth, Math. Nachr. 296 (2023), no. 12, 1-18.
B. Dridi, R. Jaidane, Existence Solutions for a Weighted Biharmonic Equation with Critical Exponential Growth, Mediterr. J. Math. 20 (2023), Art. 102.
D. E. Edmunds, D. Fortunato, E. Jannelli, Critical exponents, critical dimensions and the biharmonic operator, Arch. Rational Mech. Anal. 112 (1990), 269-289.
A. Ferrero, G. Warnault, On a solutions of second and fourth order elliptic with power type nonlinearities, Nonlinear Anal. TMA 70 (2009), 2889-2902.
R. Jaidane, Ground state solution for a weighted elliptic problem under double exponential non linear growth, Z. Anal. Anwend. 42 (2023), no. 3/4, 253-281. DOI:10.4171/ZAA/1737
R. Jaidane, Weighted fourth order equation of Kirchhoff type in dimension 4 with non-linear exponential growth, Topological Methods in Nonlinear Analysis 61 (2023), no. 2, 889-916. DOI:10.12775/TMNA.2023.005.
R. Jaidane, Weigthed elliptic equation of Kirchhoff type with exponential non linear growth, Annals of the University of Craiova, Mathematics and Computer Science Series 49 (2022), no. 2, 309-337, DOI: 10.52846/ami.v49i2.1572.
G. Kirchhoff, Mechanik, Teubner, Leipzig, 1876.
M.K.-H. Kiessling, Statistical Mechanics of Classical Particles with Logarithmic Interactions, Communications on Pure and Applied Mathematics 46 (1993), 27-56. DOI:10.1002/cpa.3160460103
A. Kufner, Weighted Sobolev spaces, John Wiley and Sons Ltd, 1985. DOI: 10.1112/blms/18.2.220
J.-L. Lions, On some questions in boundary value problems of mathematical physics, North-Holland Math. Stud. 30, North-Holland, Amsterdam-New York, 1978.
P.L. Lions, The Concentration-compactness principle in the Calculus of Variations, Part 1, Revista Iberoamericana 11 (1985), 185-201.
T.G. Myers, Thin films with high surface tension, SIAM Rev. 40 (1998), no. 3, 441-462.
F. Meng, F. Zhang, Y. Zhang, Multiple positive solutions for biharmonic equation of Kirchhoff type involving concave-convexe nonlinearities, Electronic Journal of Differential Equations 2020 (2020), no. 44, 1-15.
J. Moser, A sharp form of an inequality by N. Trudinger, Indiana Univ. Math. J. 20 (1970/71), 1077-1092.
B. Ruf, F. Sani, Sharp Adams-type inequalities in RN, Trans. Amer. Math. Soc. 365 (2013), 645-670. DOI:10.1090/S0002-9947-2012-05561-9
N.S. Trudinger, On imbeddings into Orlicz spaces and some applications, J. Math. Mech. 17 (1967), 473-483.
M. Willem, Minimax methods, Handbook of nonconvex analysis and applications, International Press, Somerville, Massachusetts, 2010, pp. 597-632.
M. Willem, Minimax Theorem, Birkhäuser, Boston, 1996.
L. Wang, M. Zhu, Adams' inequality with logarithm weight in R4, Proceedings of the AMS 149 (2021), no. 8, 3463-3472. DOI: org/10.1090/proc/15488
C. Zhang, Concentration-Compactness principle for Trudinger-Moser inequalities with logarithmic weights and their applications, Nonlinear Anal. 197 (2020), 1-22.
H. Zhao, M. Zhu, Critical and Supercritical Adams' Inequalities with Logarithmic Weights, Mediterr. J. Math. 20 (2023), Art. 313. https://doi.org/10.1007/s00009-023-02520-0
DOI: https://doi.org/10.52846/ami.v52i1.1937