Hypo-q-Norms on a Cartesian Product of Normed Linear Spaces
Abstract
Full Text:
PDFReferences
M. Biernacki, H. Pidek, C. Ryll-Nardzewski, Sur une inégalité entre des intégrales définies, (French) Ann. Univ. Mariae Curie-Sk lodowska. Sect. A. 4 (1950), 1-4.
S. S. Dragomir, Another Grüss type inequality for sequences of vectors in normed linear spaces and applications, J. Comp. Analysis & Appl. 4 (2002), no. 2, 157-172.
S. S. Dragomir, A Grüss type inequality for sequences of vectors in normed linear spaces, Tamsui Oxf. J. Math. Sci. 20 (2004), no. 2, 143-159.
S. S. Dragomir, A counterpart of Schwarz's inequality in inner product spaces, East Asian Math. J. 20 (1) (2004), 1-10. Preprint RGMIA Res. Rep. Coll. 6 (2003), Supplement, Article 18. [Online http://rgmia.org/papers/v6e/CSIIPS.pdf]
S. S. Dragomir, A survey on Cauchy-Bunyakovsky-Schwarz type discrete inequalities, J. Inequal. Pure Appl. Math. 4 (2003), no. 3, Article 63, 142 pp. [Online https://www.emis.de/journals/JIPAM/article301.html?sid=301]
S. S. Dragomir, The hypo-Euclidean norm of an n-tuple of vectors in inner product spaces and applications, J. Inequal. Pure Appl. Math. 8 (2007), no. 2, Article 52, 22 pp. [Online https://www.emis.de/journals/JIPAM/article854.html?sid=854]
S. S. Dragomir, G. L. Booth, On a Grüss-Lupaș type inequality and its applications for the estimation of p-moments of guessing mappings, Math. Comm. 5 (2000), 117-126.
A. Sheikhhosseini, M. S. Moslehian, K. Shebrawi, Inequalities for generalized Euclidean operator radius via Young's inequality, J. Math. Anal. Appl. 445 (2017), no. 2, 1516-1529.
O. Shisha, B. Mond, Bounds on differences of means, Inequalities, Academic Press Inc., New York, 1967, 293-308.
DOI: https://doi.org/10.52846/ami.v52i1.1942