On integer sequences associated with admissible prime k-tuples
Abstract
Full Text:
PDFReferences
S. Aletheia-Zomlefe, L. Fukshansky, S. Garcia, The Bateman–Horn conjecture: Heuristic, history, and applications, Expo. Math. 38 (2020) , 430–479. DOI: 10.1016/j.exmath.2019.04.005.
W. Banks, K. Ford, T. Tao, Large prime gaps and probabilistic models, arXiv:1908.08613 (2023), 1–42. https://arxiv.org/abs/1908.08613.
J. Maynard, The twin prime conjecture, Japan. J. Math. 14 (2019), 175–206. DOI: 10.1007/s11537-019-1837-z
G. Di Pietro, Numerical analysis approach to twin primes conjecture, Notes Number Theory Discrete Math. 27 (2021), no. 3, 175–183. DOI: 10.7546/nntdm.2021.27.3.175-183
L. Toth, On the asymptotic density of prime k-tuples and a conjecture of Hardy and Littlewood, CMST 25 (3) (2019), 143–148. DOI:10.12921/cmst.2019.0000033
G. Hardy, J. Littlewood, Some problems of ‘partitio numerorum’; iii: On the expression of a number as a sum of primes, Acta Math. 44 (1923), 1–70. DOI:10.1007/BF02403921
I. Belovas, M. Sabaliauskas, P. Mykolaitis, On the calculation of integer sequences, associated with twin primes, Lietuvos matematikos rinkinys 64 (2023), 1–7. DOI:10.15388/LMR.2023.33586
OEIS Foundation Inc., Entry A095017 in The On-Line Encyclopedia of Integer Sequences, http://oeis.org/A095017, [on-line; accessed 2023-11-23] (2023).
DOI: https://doi.org/10.52846/ami.v52i1.1988