On edge metric dimension of extended kayak paddle graph

Venkatesh P.S, Archana Bengeri, Yogesh Singh, Sunny Kumar Sharma

Abstract


Graph with no edge intersection other than endpoints and that can be embedded on a plane is termed as a planar graph. A subset of vertices of a graph G is said to be an edge resolving set, if each edge in the graph is uniquely identified by its distances to the vertices in the edge resolving set. The smallest cardinality of an edge resolving set for G is called the edge metric dimension and is denoted by edim(G). In this article, we determine the edge metric dimension and independent edge metric dimensions for 3-cycle and 4-cycle extended kayak paddle graphs.

Full Text:

PDF

References


Y. Boykov, M.-P. Jolly, Interactive organ segmentation using graph cuts, In: (Delp, S.L., DiGoia, A.M., Jaramaz, B. (eds)) Medical Image Computing and Computer-Assisted Intervention-MICCAI 2000, Lecture Notes in Computer Science 1935, Springer, Berlin, Heidelberg, 2000, 276-286.

F.R. Schmidt, E. Toppe, D. Cremers, Effient planar graph cuts with applications in computer vision, In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition 2009, Miami, Florida, IEEE, 2009, 351-356.

M. Neuhaus, H. Bunke, An error-tolerant approximate matching algorithm for attributed planar graphs and its application to fingerprint classiffcation, In: (Fred, A., Caelli, T.M., Duin, R.P.W., Campilho, A.C., de Ridder, D. (eds)) Structural, Syntactic, and Statistical Pattern Recognition. SSPR /SPR 2004), Lecture Notes in Computer Science 3138, Springer, Berlin, Heidelberg, 2004, 180-189.

G. Muhiuddin, S. Hameed, A. Rasheed, U. Ahmad, Cubic planar graph and its application to road network, Mathematical Problems in Engineering 2022 (2022), no. 1, 5251627.

P.J. Slater, Leaves of trees, Congressus Numerantium 14 (1975), 549-559.

F. Harary, R.A. Melter, On the metric dimension of a graph, Ars Combinatoria 2 (1976), 191-195.

S. Arumugam, V. Mathew, The fractional metric dimension of graphs, Discrete Mathematics 312 (2012), no. 9, 1584-1590.

S. Hayat, A. Khan, M.Y.H. Malik, M. Imran, M. K. Siddiqui, Fault-tolerant metric dimension of interconnection networks, IEEE Access 8 (2020), 145435-145445.

O.R. Oellermann, J. Peters-Fransen, The strong metric dimension of graphs and digraphs, Discrete Applied Mathematics 155 (2007), no. 3, 356-364.

G. Abrishami, M. A. Henning, M. Tavakoli, Local metric dimension for graphs with small clique numbers, Discrete Mathematics, 345 (2022), no. 4, 112763.

A. Kelenc, N. Tratnik, I.G. Yero, Uniquely identifying the edges of a graph: the edge metric dimension, Discrete Applied Mathematics 251 (2018), 204-220.

C. Wei, M. Salman, S. Shahzaib, M.U. Rehman, J. Fang, Classes of planar graphs with constant edge metric dimension, Complexity 2021 (2021), no. 1, 5599274.

M. Wei, J. Yue, X. Zhu, On the edge metric dimension of graphs, AIMS Mathematics 5 (2020), no. 5, 4459-4466.

I. Peterin, I.G. Yero, Edge metric dimension of some graph operations, Bulletin of the Malaysian Mathematical Sciences Society 43 (2020), no. 3, 2465-2477.

R. Nasir, S. Zafar, Z. Zahid, Edge metric dimension of graphs, Ars Combinatoria 147 (2018), 143-156.

Y. Zhang, S. Gao, On the edge metric dimension of convex polytopes and its related graphs, Journal of Combinatorial Optimization 39 (2020), no. 2, 334-350.

M. Ahsan, Z. Zahid, S. Zafar, A. Rafiq, M.S. Sindhu, M. Umar, Computing the edge metric dimension of convex polytopes related graphs, Journal of Mathematical and Computational Science 22 (2021), 174-188.

P. Singh, S. Sharma, S.K. Sharma, V.K. Bhat, Metric dimension and edge metric dimension of windmill graphs, AIMS Mathematics 6 (2021), no. 9, 9138-9153.

K. Sharma, V.K. Bhat, S.K. Sharma, Edge metric dimension and edge basis of one- heptagonal carbon nanocone networks, IEEE Access 10 (2022), 29558-29566.

I. Masmali, M.T. Ali Kanwal, M. Kamran Jamil, A. Ahmad, M. Azeem, A.N. Koam, Covid antiviral drug structures and their edge metric dimension, Molecular Physics 122 (2024), no. 5, e2259508.

M. U. Farooq, M. Hussain, A.Z. Jan, A.H. Mjaeed, M. Sediqma, A. Amjad, Computing edge version of metric dimension of certain chemical networks, Scientific Reports 14 (2024), no. 1, 12031.

S. Kumar Sharma, V. K. Bhat, On vertex-edge resolvability for the web graph and prism related graph, Ars Combinat, 157 (2023), 95-108.

A. Bengeri, V. P.S, P. Poojary, S. Kumar Sharma, On multiset dimension of extended kayak paddle graph, International Journal of Computer Mathematics: Computer Systems Theory 10 (2025), no. 1-2, 95-116.




DOI: https://doi.org/10.52846/ami.v52i2.1993