The generalized power fractional derivative operators with respect to another function in the kernel
Abstract
In this work, a new notion of the fractional derivatives with non-singular kernels the so-called power Caputo and Power Riemann-Liouville (R-L) operators associated with another function in the kernel are presented. The new defined operators are the generalization of different operators found in the literature. Some basic properties and formulas of the new operators are discussed. Additionally, novel formulas and properties of fractional derivatives and integrals in the Power Caputo and Power R-L senses are presented in this study.
Full Text:
PDFReferences
N. Abel, Solution de quelques problèmes à l'aide d'intégrales définies, Mag. Naturv., 1823.
A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations, North Holland Mathematics Studies, Elsevier, New York, London, 2006.
N. Sene, SIR epidemic model with Mittag-Leffler fractional derivative, Chaos Solitons Fractals 137 (2020), Article ID 109833.
M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Progr. Fract. Di_er. Appl. 1 (2015), no. 2, 73-85.
A. Atangana, D. Baleanu, New fractional derivatives with non-local and non-singular kernel: Theory and application to heat transfer model, Therm. Sci. 20 (2016), 763-769.
M. Al-Refai, On weighted Atangana-Baleanu fractional operators, Adv. Differ. Equ. 2020 (2020), Article ID 3.
W.H. Huang, M. Samraiz, A. Mehmood, D. Baleanu, G. Rahman, S. Naheed, Modified Atangana-Baleanu fractional operators involving generalized Mittag-Leffler function, Alexandria Engineering Journal 75 (2023), 639-648.
K. Hattaf, A new generalized definition of fractional derivative with non-singular kernel, Computation 8 (2020), Article ID 49.
K. Hattaf, On Some Properties of the New Generalized Fractional Derivative with Non-Singular Kernel, Mathematical Problems in Engineering 2021 (2021), Article ID 1580396, 6 pages.
D. Zwillinger, A. Jeffrey, (eds.), Table of integrals, series, and products, Elsevier, 2007.
E.M. Lotfi, H. Zine, D.F. Torres, N. Yousfi, The power fractional calculus: First definitions and properties with applications to power fractional differential equations, Mathematics 10 (2002), no. 19, Article ID 3594.
K. Hattaf, A new mixed fractional derivative with application in computational biology, Computation 12 2024, no. 1, Article ID 7.
F. Jarad, T. Abdeljawad, K. Shah, On the weighted fractional operators of a function with respect to another function, Fractals 28 (2020), no. 8, 1-12.
DOI: https://doi.org/10.52846/ami.v52i2.2014