On integral extension of Ankeny and Rivlin-type inequality
Abstract
A well-known theorem due to Ankeny and Rivlin states that if p(z) is a polynomial of degree n having no zero in |z| < 1, then
max |p(z)| <= (Rn+1)/2 max |p(z)|.
|z|=R>=1 |z|=1
In this paper, we obtain an extension as well as an improvement of this inequality to the integral setting.
Full Text:
PDFReferences
N.C. Ankeny, T.J. Rivlin, On a theorem of S. Bernstein, Pacific J. Math. 5 (1955), 849-852.
V.V. Arestov, On inequalities for trigonometric polynomials and their derivative, Izv. Akad. Nauk. SSSR. Ser. Math. 45 (1981), 3-22.
A. Aziz, Q.M. Dawood, Inequalities for polynomials and its derivatives, J. Approx. Theory 54 (1998), 306-313.
S. Bernstein, Sur l' ordre de la meilleure approximation des fonctions continues par des polynômes de degrée donnée, Mem. Acad. R. Belg. 4 (1912), 1-103.
R.P. Boas, Q.I. Rahman, Lp inequalities for polynomials and entire functions, Arch. Rational Mech. Anal. 11 (1962), 34-39.
N.G. de-Bruijn, Inequalities concerning polynomials in the complex domain, Nederl. Akad. Wetench. Proc. Ser. A 50 (1947), 1265-1272; Indag. Math, 9 (1947), 591-598.
N.K. Govil, M.A. Qazi, Q.I. Rahman, Inequalities describing the growth of polynomials not vanishing in a disk of prescribed radius, Math. Inequal. Appl. 6 (2003), 491-498.
G.H. Hardy, The mean value of the modulus of an analytic function, Proc. Lond. Math. Soc. 14 (1915), 269-277.
R. Laishangbam, N.K. Singha, B. Chanam, Some extensions of Bernstein-type inequalities for integral mean estimation of a polynomial, Math. Found. Comput. 8 (2025), 796-808. https://doi.org/10.3934/mfc.2024031
A. Mir, New integral norm estimates of Bernstein-type inequalities for a certain class of polynomials, Indian J. Pure Appl. Math. 51 (2020), 1357-1371.
A. Mir, Some integral inequalities for a polynomial with zeros outside the unit disk, Acta Univ. Sapientiae Math. 13 (2021), 396-412.
A. Mir, M. Bidkham, Integral-norm estimates for the polar derivative of a polynomial, J. Anal. 30 (2022), Article ID 355.
G. Pólya, G. Szegö, Problems and Theorems in Analysis, Vol. 1, Springer-Verlag, New York/Heidelberg/Berlin, 1972.
Q.I. Rahman, G. Schmeisser, Lp inequalities for polynomials, J. Approx. Theory. 53 (1988), 26-32.
W. Rudin, Real and Complex Analysis, Tata McGraw-Hill Publishing Company (reprinted in India), 1977.
N.K. Singha, B. Chanam, Inequalities for integral mean estimate of polynomials, Nonlinear Funct. Anal. Appl. 29 (2024), 275-293.
N.K. Singha, B. Chanam, Integral mean estimates of Turán-type inequalities for the polar derivative of a polynomial with restricted zeros, Open Math. 22 (2024), Article ID 20240061.
N.K. Singha, B. Chanam, On Turán and Bernstein-type integral mean estimates for polar derivative of a complex polynomial, Publ. Inst. Math. (2025) (to appear).
N.K. Singha, B. Chanam, On Turán-type integral mean estimate of a polynomial, Math. Found. Comput. 8 (2025), 164-181. https://doi.org/10.3934/mfc.2023048
G. Szegö, Bemerkungen zu einem Satz von J. H. Grace über die Wurzeln algebraischer Gleichungen, Math. Z. 13 (1922), 28-55.
R. Thoudam, N.K. Singha, B. Chanam, Lower and upper bounds of integral mean estimate for polar derivative of a polynomial, Ann. Univ. Craiova Math. Comput. Sci. Ser. 51 (2024), 468-487.
A. Zygmund, A remark on conjugate series, Proc. Lond. Math. Soc. 34 (1932), 392-400.
DOI: https://doi.org/10.52846/ami.v52i2.2017