Semi-linear differential equations with finite delay via densifiability techniques

Nadia Ait Ouali, Mokhtaria Boutlilis, Abdelkrim Salim, Mouffak Benchohra

Abstract


This article investigates the existence of solutions for certain types of semi-linear differential equations. Three specific problems are addressed: a problem involving semi-linear differential equations with finite delay, a neutral problem, and a semi-linear neutral type integro-differential problem with a nonlocal initial condition. The study utilizes a new fixed-point theorem based on the concept of nondensifiability degree, which is broader than the traditional measure of noncompactness and encompasses cases that were previously inaccessible. Additionally, an illustrative example is provided to support and clarify the findings.

Full Text:

PDF

References


S. Abbas, M. Benchohra, Advanced Functional Evolution Equations and Inclusions, Developments in Mathematics 39, Springer, Cham, 2015.

A. Aghajani, J. Bana's, N. Sebzali, Some generalizations of Darbo fixed point theorem and applications. Bull. Belg. Math. Soc. Simon Stevin 20 (2013), 345-358.

B. Balachandran, T. Kalmar-Nagy, D.E. Gilsinn, Delay differential equations: Recent advances and new directions, Springer, 2009.

G. Ballinger, X. Liu, Boundedness for impulsive delay differential equations and applications in populations growth models, Nonlinear Anal. 53 (2003), 1041-1062.

A. Bellen, M. Zennaro, Numerical Methods for Delay Differential Equations, Numerical Mathematics and Scientific Computation, Oxford University Press, New York, 2003.

N. Benkhettou, K. Aissani, A. Salim, M. Benchohra, C. Tunc, Controllability of fractional integro-differential equations with infinite delay and non-instantaneous impulses, Appl. Anal. Optim. 6 (2022), 79-94.

N. Benkhettou, A. Salim, K. Aissani, M. Benchohra, E. Karapınar, Non-instantaneous impulsive fractional integro-differential equations with state-dependent delay, Sahand Commun. Math. Anal. 19 (2022), 93-109. https://doi.org/10.22130/scma.2022.542200.1014

A. Bensalem, A. Salim, B. Ahmad, M. Benchohra, Existence and controllability of integrodifferential equations with non-instantaneous impulses in Fr´echet spaces, CUBO. A Mathematical Journal 25 (2023), no. 2, 231–250.

A. Bensalem, A. Salim, M. Benchohra, Ulam-Hyers-Rassias stability of neutral functional integrodifferential evolution equations with non-instantaneous impulses on an unbounded interval, Qual. Theory Dyn. Syst. 22 (2023), Article no. 88.

A. Bensalem, A. Salim, M. Benchohra, J. J. Nieto, Controllability results for second-order integro-differential equations with state-dependent delay. Evol. Equ. Control Theory. 12 (2023), no. 6, 1559-1576. http://dx.doi.org/10.3934/eect.2023026

L. Byszewski, Existence and uniqueness of a classical solution to a functional-differential abstract nonlocal Cauchy problem, Appl. Math. Stoch. Anal. 12 (1999), 91-97.

Y. Cherruault, A. Guillez, Une méthode pour la recherche du minimum global d’une fonctionnelle, C. R. Acad. Sci. Paris Sér. I Math. 296 (1983), 175-178.

Y. Cherruault, G. Mora, Optimisation Globale, Théorie des Courbes α-Denses, Economica, Paris, France, 2005.

M. A. Diop, M. Dieye, H. Hmoyed, K. Ezzinbi, On the existence of mild solutions for nonlocal impulsive partial integrodifferential equations in Banach spaces, Le Matematiche 74 (2019), no. 1, 13-34.

T. Erneux, Applied Delay Differential Equations, Surveys and Tutorials in the Applied Mathematical Sciences, Springer, New York, 2009.

G. Garc´ıa, G. Mora, The degree of convex nondensifiability in Banach spaces, J. Convex Anal. 22 (2015), 871-888.

G. Garc´ıa, G. Mora, A fixed point result in Banach algebras based on the degree of nondensifiability and applications to quadratic integral equations, J. Math. Anal. Appl. 472 (2019), 1220-1235.

G. Garc´ıa, A quantitative version of the Arzel`a-Ascoli theorem based on the degree of nondensifiability and applications, Appl. Gen. Topol. 20 (2) (2019), 265-279.

G. Garc´ıa, Existence of solutions for infinite systems of differential equations by densifiability techniques, Filomat 32 (2018), 3419-3428.

G. Garc´ıa, Solvability of an initial value problem with fractional order differential equations in Banach space by α-dense curves, Fract. Calc. Appl. Anal. 20 (2017), 646–661.

R. Grimmer, Resolvent opeators for integral equations in a Banach space, Trans. Amer. Math. Soc. 273 (1982), 333-349.

R. Grimmer, A.J. Pritchard, Analytic resolvent operators for integral equations in a Banach space, J. Differential Equations 50 (1983), 234-259.

V. Kolmanovskii, A. Myshkis, Introduction to the Theory and Applications of Functional Differential Equations, Kluwer Academic Publishers, Dordrecht, 1999.

G. Mora, Y. Cherruaul, Characterization and generation of α-dense curves, Comput. Math. Appl. 33 (1997), 83-91.

G. Mora, J. A. Mira, α-dense curves in infinite dimensional spaces, Int. J. Pure Appl. Math. 5 (2003), 437-449.

G. Mora, D. A. Redtwitz, Densifiable metric spaces, Rev. Real Acad. Cienc. Exactas F´ıs. Nat. Ser. A Math. 105 (2011), 71-83.

S. Rezapour, K.S. Vijayakumar, H.R. Henriquez, V. Nisar, A. Shukla, A Note on existence of mild solutions for second-order neutral integro-differential evolution equations with statedependent delay, Fractal Fract. 5 (2021), no. 3, 1-17.

V. Volterra, Sur la Théorie Mathématiques des phénomènes héréditaires, J.de Mathématiques pures et apliquées 7 (1928), 249-298.

X. Xue, Existence of solutions for semilinear nonlocal Cauchy problems in Banach spaces, Electron. J. Differential Equations 64 (2005), 1-7.




DOI: https://doi.org/10.52846/ami.v52i2.2019