A parabolic problem of Kirchhoff type with gradient term and nonlinear boundary condition
Abstract
Full Text:
PDFReferences
A.L. Alaoui, A. Jamea, A.E. Hachimi, Existence and stability of solutions to nonlocal parabolic problems with variable exponent, AIP Conference Proceedings 2074 (2019), 020012. https://doi.org/10.1063/1.5090629
S. Antontsev, J. Rodrigues, On stationary thermo-rheological viscous flows, Ann. Univ. Ferrara Sez. VII Sci. Mat. 52 (2006), no.1, 19-36.
E. Amoroso, V. Morabito, Nonlinear Robin problems with double phase variable exponent operator, Discrete Contin. Dyn. Syst. Ser.- S 18 (2025), no. 6, 1500-1516.
R. Arora, S. Shmarev, Existence and regularity results for a class of parabolic problems with double phase flux of variable growth, Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales - Serie A: Matematicas 117 (2023), Article no. 34. https://doi.org/10.1007/s13398-022-01346-x
G. Arumugan, A.H. Erhardt, Existence and uniqueness of weak soutions to parabolic problems with nonstandard growth and cross diffusion, Electron. J. Differential Equations 123 (2020), 1-13.
T.A. Asfaw, A degree theory for compact perturbations of monotone type operators and application to nonlinear parabolic problem, Abstr. Appl. Anal. 2017 (2017), 7236103, 1-13.
T.A. Asfaw, A.G. Kartsatos, A Browder topological degree theory for multi-valued pseudomonotone perturbations of maximal monotone operators, Adv. Math. Sci. Appl 22 (2012), no. 1, 91-148.
H. Belaouidel, A. Ourraoui, N. Tsouli, General quasilinear problems involving (p1(x); p2(x))-Laplace type equation with Robin Boundary, Glob. J. Pure Appl. Math 15 (2019), no. 3, 223-239.
M. Bendahmane, P. Wittbold, A. Zimmermann, Renormalized solutions for a nonlinear parabolic equation with variable exponents and L1-data, J. Differential Equations 249 (2010), 1483-1515.
H. Brezis, F. Browder, Strongly nonlinear elliptic boundary value problems, Ann. Sc. Norm. Super. Pisa Cl. Sci 5 (1978), no. 3, 587-603.
F. Browder, Pseudo-monotone operators and nonlinear elliptic boundary value problems on unbounded domains, Proc. Natl. Acad. Sci. USA 74 (1977), no. 7, 2659-2661.
S. Carl, V.K. Le, Quasilinear parabolic variational inequalities with multi-valued lower-order terms, Z. Angew. Math. Phys 65 (2014), no. 5, 845-864.
A. Charkaoui, A. Ben-Loghfyry, S. Zeng, Nonlinear parabolic double phase variable exponent systems with applications in image noise removal, Appl Math Modell 132 (2024), 495-530.
Y. Chen, S. Levine, M. Rao, Variable Exponent, Linear Growth Functionals in Image Restoration, SIAM J. Appl. Math. 66 (2006), no. 1-3, 1383-1406.
S.G. Deng, Positive solutions for Robin problem involving the p(x)-Laplacian, J. Math. Appl. 360 (2009), no. 2, 548-560.
Q.V. Chuong, L.C. Nhan, L.X. Truong, Asymptotic behavior of solutions for a new general class of parabolic Kirchhoff type equation with variable exponent sources, J. Math. Appl. 527 (2023), no. 2, 127446.
G. Dai, R. Ma, Solutions for a p(x)-Kirchhoff type equation with Neumann boundary data, Nonlinear Anal. Real World Appl. 12 (2011), no. 5, 2666-2680.
X. L. Fan, D. Zhao, On the Spaces Lp(x)(Ω) and Wm;p(x)(Ω), J. Math. Appl. 263 (2001), no. 2, 424-446.
X.L. Fan, J.S. Shen, D. Zhao, Sobolev embedding theorems for spaces Wk;p(x)(Ω) , J. Math. Appl. 262 (2001), no. 2, 749-760.
X.L. Fan, Q.H. Zhang, Existence of solutions for p(x)-Laplacian Dirichlet problems, Nonlinear Anal. 52 (2003), no. 8, 1843-1852.
Y. Fu, M. Xiang, Existence of solutions for parabolic equations of Kirchhoff type involving variable exponent, Appl. Anal. 95 (2016), 524-544.
M. Hammoua, E. Azroul, Existence of weak solutions for a nonlinear parabolic equations by Topological degree, Adv. Theor. Nonlinear Anal. App. 4 (2020), no. 4, 292-298.
H. E. Hammar, Ch. Allalou, S. Melliani, A. Kassidi, Existence results for a parabolic problem of Kirchhoff type via toplogical degree, Adv. Math. Modell. App. 8 (2023), 354-364.
Y. Han, Q. Li, Threshold results for the existence of global and blow-up solutions to Kirchhoff equations with arbitrary initial energy, Comput. Math. Appl. 75 (2018), 3283-3297.
A. Khaldi, A. Ouaoua, M. Maouni, Global existence and stability of solution for a nonlinear Kirchhoff type reaction-diffusion equation with variable exponents, Math. Bohem. 147 (2022), 471-484.
J. Kobayashi, M. Otani, Topological degree for (S+)- mappings with maximal monotone perturbations and its applications to variational inequalities, Nonlinear Anal. 59 (2004), 147-172.
F. Li , Z. Li, L. Pi, Variable exponent functionals in image restoration, Appl. Math. Comput. 216 (2010), no. 3, 870-882.
D. Liu, X. Wang, J. Yao, On (p1(x); p2(x))-Laplace operators, J. Lanzhou Univ. Nat. Sci 52 (2012), no. 2, 251-257.
S.E. Manouni, G. Marino, P. Winkert, Existence results for double phase problems depending on Robin and Steklov eigenvalues for the p-Laplacian, Adv. Nonlinear Anal. 11 (2022), 304-320.
V. Mustonen, On elliptic operators in divergence form; old and new with applications. In: Function Spaces, Di_erential Operators and Nonlinear Analysis: Proceedings of the Conference held in Milovy, Bohemian-Moravian Uplands, May 28-June 2, 2004, Mathematical Institute, Academy of Sciences of the Czech Republic, 2005, 188-200.
M.E. Ouaarabi, Ch. Allalou, S. Melliani, Existence of weak solutions to a class of nonlinear degenerate parabolic equations in weighted Sobolev space, Electron. J. Math. Anal. App. 11 (2023), no. 1, 45-58.
K. Rajagopal, M. Ruzicka, Mathematical modeling of electrorheological materials, Continuum Mech. Thermodyn. 13 (2001), 59-78.
K. Rajagopal, M. Ruzicka, On the modeling of electrorheological materials, Mech. Res. Comm. 23 (1996), 401-407.
M. Ruzicka, Electrorheological uids: modeling and mathematical theory, Lecture Notes in Mathematics 1748, Springer-Verlag, Berlin, 2000.
U. Sert, S. Shmarev, On a class of nonlocal parabolic equations of Kirchhoff type: Nonexistence of global solutions and blow-up, Math. Methods Appl. Sci. 45 (2022), 8674-8700.
S. Yacini, C. Allalou, K. Hilal, On the weak solution for the nonlocal parabolic problem with p-Kirchhoff term via topological degree, FILOMAT 38 (2024), 2889-2898.
S. Yacini, Ch. Allalou, Weak solutions of a nonlinear degenerate fourth-order parabolic equation via the topological degree method, Math. Methods Appl. Sci. 47 (2024), no. 18, 13705-13717. https://doi.org/10.1002/mma.10216
J. Yao, Solutions for Neumann boundary value problems involving p(x)-Laplace operators, Nonlinear Anal. 68 (2008), 1271-1283.
E. Zeidler, Nonlinear functional analysis and its applications. II/B: Nonlinear Monotone Operators, Springer-Verlag, New York, 1990.
V.V. Zhikov, Averaging of functionals of the calculus of variations and elasticity theory, Izv. Akad. Nauk SSSR Ser. Mat. 68 (1986), no. 4, 675-710.
DOI: https://doi.org/10.52846/ami.v52i2.2025