On metric dimension of tridecagonal circular ladder
Abstract
Full Text:
PDFReferences
Z. Beerliova, F. Eberhard, T. Erlebach, A. Hall, M. Hoffmann, M. Mihal'ak, L.S. Ram, Network discovery and verification, IEEE J. Selected Areas Commun. 24 (2006), no. 12, 2168-2181.
G. Chartrand, V. Saenpholphat, P. Zhang, The independent resolving number of a graph, Math. Bohem. 128 (2003), no. 4, 379-393.
G. Chartrand, L. Eroh, M.A. Johnson, O.R. Oellermann, Resolvability in graphs and the metric dimension of a graph, Discret. Appl. Math. 105 (2000), no. 1-3, 99-113.
F. Harary, R.A. Melter, On the metric dimension of a graph, Ars Comb. 2 (1976), 191-195.
M. Imran, S.A. Bokhary, A.Q. Baig, Families of Rotationally-Symmetric Plane Graphs with Constant Metric Dimension, Southeast Asian Bull. Math. 36 (2012), 663-675.
I. Javaid, M.T. Rahim, K. Ali, Families of regular graphs with constant metric dimension, Util. Math. 75 (2008), 21-34.
S. Khuller, B. Raghavachari, A. Rosenfeld, Landmarks in graphs, Discrete Appl. Math. 70 (1996), 217-229.
K. Liu, N. Abu-Ghazaleh, Virtual coordinate back tracking for void travarsal in geographicrouting, In: (T. Kunz, S.S. Ravi, (eds)) Ad-Hoc, Mobile, and Wireless Networks. ADHOC-NOW 2006, Lecture Notes in Computer Science 4104, Springer, Berlin, Heidelberg, 46-59.
R.A. Melter, I. Tomescu, Metric bases in digital geometry, Comput. Gr. Image Process 25 (1984), 113-121.
S.K. Sharma, V.K. Bhat, Metric Dimension of heptagonal circular ladder, Discrete Math. Algorithms Appl. 13 (2021), no. 1, 2050095.
S.K. Sharma, V.K. Bhat, On metric dimension of plane graphs Jn, Kn and Ln, J. Algebra Comb. Discrete Struct. Appl. 8 (2021), no. 3, 197-212.
S.K. Sharma, V.K. Bhat, On some plane graphs and their metric dimension, Int. J. Appl. Comput. 7 (2021), no. 5, 1-15.
P.J. Slater, Leaves of trees, Congr. Numer. 14 (1975), 549-559.
DOI: https://doi.org/10.52846/ami.v52i2.2056