Local dynamics and bifurcation for a two-dimensional cubic Lotka-Volterra system (Part II)

Mihaela Sterpu, Raluca Efrem

Abstract


The local bifurcation and dynamics for a two-dimensional cubic Kolmogorov system, depending on two small parameters, in certain hypotheses on the coefficients, are investigated. The paper continues the study performed in [4], by treating two non-generic cases, corresponding to the hypotheses that one of the significant coefficients vanishes. In the first non-generic case, the local dynamics is found to be similar to the one obtained in the generic case treated in [4]. In the second non-generic case new possibilities of behavior are found.

Full Text:

PDF

References


S. Benyoucef, A. Bendjeddou, A class of Kolmogorov system with exact algebraic limit cycles, International Journal of Pure and Applied Mathematics 103 (3) (2015), 439-451.

F. Brauer, C. Castillo-Chavez, Mathematical Models in Population Biology and Epidemiology, Springer-Verlag, Heidelberg, 2000.

S. N. Chow, C. Li, D. Wang, Normal Forms and Bifurcation of Planar Vector Fields, Cambridge University Press, Cambridge and New York, 1994.

R. Efrem, M. Sterpu, Local dynamics and bifurcation for a two-dimensional cubic Lotka-Volterra system (I), Annals of the University of Craiova-Mathematics and Computer Science Series 50 (2023), no. 1, 247-258.

X. C. Huang, L. Zhu, Limit cycles in a general Kolmogorov model, Nonlinear Analysis: Theory, Methods & Applications 60 (2005), Issue 8, 1393-1414.

Y.A. Kuznetsov, Elements of Applied Bifurcation Theory (Second Edition), Appl. Math. Sci. vol. 112, Springer-Verlag, New York, 2004.

J. Llibre, T. Salhi, On the dynamics of a class of Kolmogorov systems, Appl. Math. Comput. 225 (2013), 242-245.

N. G. Lloyd, J. M. Pearson, E Saéz, I. Szántó, A cubic Kolmogorov system with six limit cycles, Computers & Mathematics with Applications 44 (2002), Issues 3-4, 445-455.

G. Moza, D. Constantinescu, R. Efrem, An analysis of a class of Lotka-Volterra systems, Qualitative Theory of Dynamical Systems 21, Article number: 32 (2022).

G. Moza, M. Sterpu, C. Rocșoreanu, An analysis of two degenerate double-Hopf bifurcations, Electronic Research Archive 30 (2022), 382-403.

L. Perko, Differential Equations and Dynamical Systems (Third Edition), Springer Verlag, New York, 2001.

J. Sotomayor, Generic bifurcations of dynamic systems, In: (M.M. Peixoto, Ed.) Dynamical Systems, Academic Press, New York, 1973, 561-582.

G. Tigan, C. Lazureanu, F. Munteanu, C. Sterbeti, A. Florea, Bifurcation diagrams in a class of Kolmogorov systems, Nonlinear Analysis: Real World Applications 56 (2020), 103154.

G. Tigan, C. Lazureanu, F. Munteanu, C. Sterbeti, A. Florea, Analysis of a class of Kolmogorov systems, Nonlinear Analysis: Real World Applications 57 (2021), 103202.

F. Xu, W. Gan, On a Lotka-Volterra type competition model from river ecology, Nonlinear Analysis: Real World Applications 47 (2019), 373-384.

Y. Yuan, H. Chen, C. Du, Y. Yuan, The limit cycles of a general Kolmogorov system, J. Math. Anal. Appl. 392 (2012), 225-237.




DOI: https://doi.org/10.52846/ami.v51i2.2070