Several combinatorial inequalities related to squarefree monomial ideals

Silviu Balanescu, Mircea Cimpoeas

Abstract


Let $K$ be a field and $S=K[x_1,\ldots,x_n]$, the ring of polynomials in $n$ variables, over $K$. Using the fact that the Hilbert depth is an upper bound for the Stanley depth of a quotient of squarefree monomial ideals $0\subset I\subsetneq J\subset S$, we prove several combinatorial inequalities which involve the coefficients of the polynomial $f(t)=(1+t+\cdots+t^{m-1})^n$.


Full Text:

PDF

References


J. Apel, On a conjecture of R. P. Stanley; Part II - Quotients Modulo Monomial Ideals, J. Algebraic Combin. 17 (2003), no. 1, 57-74.

C. Biro, D. M. Howard, M. T. Keller, W. T. Trotter, S. J. Young, Interval partitions and Stanley depth, J. Combin. Theory Ser. A 117 (2010), no. 4, 475-482.

S. Bălănescu, M. Cimpoeas, C. Krattenthaller, On the Hilbert depth of monomial ideals, (2024), arXiv:2306.09450v4

W. Bruns, C. Krattenthaler, J. Uliczka, Stanley decompositions and Hilbert depth in the Koszul complex, J. Commut. Algebra 2 (2010), no. 3, 327-357.

M. Cimpoeas, On the Stanley depth of the path ideal of a cycle graph, Rom. J. Math. Comput. Sci. 6 (2016), no. 2, 116-120.

M. Cimpoeas, Stanley depth of the path ideal associated to a line graph, Math. Rep. (Bucur.) 19 (69) (2017), no. 2, 157-164.

M. Cimpoeas, A class of square-free monomial ideals associated to two integer sequences, Comm. Algebra 46 (2018), no. 3, 1179-1187.

L. Comtet, Advanced combinatorics. The Art of Finite and Infinite Expansions, D. Reidel, 1974.

A. M. Duval, B. Goeckneker, C. J. Klivans, J. L. Martine, A non-partitionable Cohen-Macaulay simplicial complex, Adv. Math. 299 (2016), 381-395.

L. Euler, De evolution potestatis polynomialis cuiuscunque (1+x+x2+x3+x4+etc.)n, Nova Acta Academiae Scientarum Imperialis Petropolitinae 12 (1801), 47-57.

J. Herzog, M. Vlădoiu, X. Zheng, How to compute the Stanley depth of a monomial ideal, J. Algebra 322 (2009), no. 9, 3151-3169.

J. Herzog, A survey on Stanley depth, In: Monomial Ideals, Computations and Applications, Springer, 2013, 3-45.

R. Okazaki, A lower bound of Stanley depth of monomial ideals, J. Commut. Algebra 3 (2011), no. 1, 83-88.

A. Rauf, Depth and sdepth of multigraded module, Comm. Algebra 38 (2010), no. 2, 773-784.

L. J. Slater, Generalized Hypergeometric Functions, Cambridge University Press, Cambridge, 1966.

R. P. Stanley, Linear Diophantine equations and local cohomology, Invent. Math. 68 (1982), 175-193.




DOI: https://doi.org/10.52846/ami.v52i1.2104