TV production application based on Artificial Intelligence specific algorithms
Abstract
Full Text:
PDFReferences
M.A.H. Akhand, S. Roy, N. Siddique, M.A.S. Kamal, T. Shimamura, Facial emotion recognition using transfer learning in the deep CNN, Electronics 10 (2021), no. 9, 1036.
S. Albawi, T.A. Mohammed, S. Al-Zawi, Understanding of a convolutional neural network, International Conference on Engineering and Technology (ICET), Antalya, Turkey, 2017, 1-6. DOI: 10.1109/ICEngTechnol.2017.8308186
H. Du, H. Shi, D. Zeng, X.P. Zhang, T. Mei, The elements of end-to-end deep face recognition: A survey of recent advances, ACM Computing Surveys (CSUR) 54 (2022), no. 10s, 1-42.
H. Ge, Z. Zhu, Y. Dai, B. Wang, X. Wu, Facial expression recognition based on deep learning, Computer Methods and Programs in Biomedicine 215 (2022), 106621.
D. Gurin, V. Yevsieiev, S. Maksymova, A. Alkhalaileh, Using Convolutional Neural Networks to Analyze and Detect Key Points of Objects in Image, Multidisciplinary Journal of Science and Technology 4 (2024), no. 9, 5-15.
M. Hassaballah, S. Aly, Face Recognition: Challenges, Achievements, and Future Directions, IET Computer Vision 9 (2015), 614-626. DOI: 10.1049/iet-cvi.2014.0084.
O. Hmidani, E.I. Alaoui, A comprehensive survey of the R-CNN family for object detection, In: 2022 5th International Conference on Advanced Communication Technologies and Networking (CommNet), Marrakech, Morocco, 2022, 1-6. DOI: 10.1109/CommNet56067.2022.9993862.
O.E. Olorunshola, M.E. Irhebhude, A.E. Evwiekpaefe, A comparative study of YOLOv5 and YOLOv7 object detection algorithms, Journal of Computing and Social Informatics 2 (2023), no. 1, 1-12.
V. Pham, L.D.T. Ngoc, D.L. Bui, Optimizing YOLO Architectures for Optimal Road Damage Detection and Classification: A Comparative Study from YOLOv7 to YOLOv10, IEEE International Conference on Big Data (BigData), 2024, December, 8460-8468.
H. Qin, J. Wang, X. Mao, Z.A. Zhao, X. Gao, W. Lu, An improved faster R-CNN method for landslide detection in remote sensing images, Journal of Geovisualization and Spatial Analysis 8 (2024), no. 1, 2.
R. Ranjan, S. Sankaranarayanan, C.D. Castillo, R. Chellappa, An all-in-one convolutional neural network for face analysis, 2017 12th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2017), Washington, DC, USA, 2017, 17-24. DOI: 10.1109/FG.2017.137.
S. Ren, K. He, R. Girshick, J. Sun, Faster R-CNN: Towards real-time object detection with region proposal networks, Proc. Adv. Neural Inf. Process. Syst. 28, 2015.
P. Santemiz, L.J. Spreeuwers, R.N.J. Veldhuis, Automatic face recognition for home safety using video-based side-view face images, IET Biom. 7 (2018), 606-614. https://doi.org/10.1049/ietbmt.2017.0203
D.J. Santry, Convolutional Neural Networks. Demystifying Deep Learning: An Introduction to the Mathematics of Neural Networks, IEEE 2024, 111-131, DOI: 10.1002/9781394205639.ch6
https://docs.ultralytics.com/models/
R. Sapkota, Z. Meng, M. Churuvija, X. Du, Z. Ma, M. Karkee, Comprehensive performance evaluation of yolo11, yolov10, yolov9 and yolov8 on detecting and counting fruitlet in complex orchard environments, 2024, arXiv:2407.12040.
V. Strehle, N. Bendiksen, A. O'Toole, Deep convolutional neural networks are sensitive to configural properties of faces, Journal of Vision 23 (2023), no. 9, 5560-5560.
M.M. Taye, Theoretical understanding of convolutional neural network: Concepts, architectures, applications, future directions, Computation 11 (2023), no. 3, 52.
C.-Y. Wang, A. Bochkovskiy, H.Y,M. Liao, YOLOv7: Trainable Bag-of-Freebies Sets New State-of-the-Art for Real-Time Object Detectors, IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Vancouver, BC, Canada, 2023, 7464-7475. DOI: 10.1109/CVPR52729.2023.00721.
Q. Wang, J. Zeng, P. Qin, P. Zhao, R. Chai, Z. Yang, J. Zhang, Semi-White-Box Strategy: Enhancing Data Efficiency and Interpretability of Convolutional Neural Networks in Image Processing, International Journal of Intelligent Systems 1 (2023), 9227348.
J. Yang et al., Neural aggregation network for video face recognition, Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), 2017, Nicole.
A. Younesi, M. Ansari, M. Fazli, A. Ejlali, M. Shafique, J. Henkel, A Comprehensive Survey of Convolutions in Deep Learning: Applications, Challenges, and Future Trends, IEEE Access 12 (2024), 41180-41218. DOI: 10.1109/ACCESS.2024.3376441.
N. Zhang, A Study on the Impact of Face Image Quality on Face Recognition in the Wild, 2023. Retrieved from https://arxiv.org/abs/2307.02679.
X. Zhang, T. Zhang, G. Wang, P. Zhu, X. Tang, X. Jia, L. Jiao, Remote Sensing Object Detection Meets Deep Learning: A Metareview of Challenges and Advances, IEEE Geosci. Remote Sens. Mag. 11 (2023), 8-44.
D. Zhao, F. Shao, Q. Liu, H. Zhang, Z. Zhang, L. Yang, Improved Architecture and Training Strategies of YOLOv7 for Remote Sensing Image Object Detection, Remote Sensing 16 (2024), no. 17, 3321.
X. Zhao, L. Wang, Y. Zhang, X. Han, M. Deveci, M. Parmar, A review of convolutional neural networks in computer vision, Artificial Intelligence Review 57 (2024), no. 4, 99.
DOI: https://doi.org/10.52846/ami.v52i1.2118