A class of compact complex manifolds without complex submanifolds
Abstract
Full Text:
PDFReferences
F. A. Belgun, On the metric structure of non-Kähler complex surfaces, Mathematische Annalen 317 (2000), 1-40.
A. Besse, Einstein Manifolds, Springer Verlag, 1987.
M. Brunella, A characterization of Inoue surfaces, Commentarii Mathematici Helvetici 88 (2013), 859-874.
C. Ciulică, Curves on Endo-Pajitnov manifolds. https://doi.org/10.48550/arXiv.2502.19520.
C. Ciulică, A. Otiman, M. Stanciu, Special non-Kähler metrics on Endo-Pajitnov manifolds, Annali di Matematica Pura ed Applicata (2024). https://doi.org/10.1007/s10231-024-01533-0.
Ș. Deaconu, V. Vuletescu, On locally conformally Kahler metrics on Oeljeklaus-Toma manifolds, manuscripta math. 171 (2023), 643-647. https://doi.org/10.1007/s00229-022-01403-0.
A. Dubickas, Nonreciprocal units in a number field with an application to Oeljeklaus-Toma manifolds, New York Journal of Mathematics 20 (2014), 257-274.
P. Griffths, J. Harris, Principles of Algebraic Geometry, Wiley-Interscience, 1994.
M. Inoue, On surfaces of Class VII0, Inventiones mathematicae 24 (1974), 269-310.
N. Istrati, A. Otiman, De Rham and twisted cohomology of Oeljeklaus-Toma manifolds, Annales de l'institut Fourier 69 (2019), no. 5, 2037-2066.
H. Kasuya, Vaisman metrics on solvmanifolds and Oeljeklaus-Toma manifolds, Bulletin of the London Mathematical Society 45 (2012), no. 1, 15-26.
K. Oeljeklaus, M. Toma, Non-Kähler compact complex manifolds associated to number fields, Annales de l'institut Fourier 55 (2005), no. 1, 161-171.
L. Ornea, M. Verbitsky, Oeljeklaus-Toma manifolds admitting no complex subvarieties, Mathematical Research Letters 18, no. 4 (2011), 747-754.
L. Ornea, M. Verbitsky, V. Vuletescu, Flat affine subvarieties in Oeljeklaus-Toma manifolds, Mathematische Zeitschrift 292 (2019), 839-847, https://doi.org/10.1007/s00209-018-2121-2.
A. Otiman, Morse-Novikov cohomology of locally conformally Kähler surfaces, Mathematische Zeitschrift 289 (2018), 605-628. https://doi.org/10.1007/s00209-017-1968-y.
A. Pajitnov, H. Endo, On the generalization of Inoue manifolds, Proceedings of the International Geometry Center 13, no. 4 (2020), 24-39.
F. Tricerri, Some examples of locally conformal Kähler manifolds, Rendiconti del Seminario Matematico Università e Politecnico di Torino 40, (1) (1982), 81-92.
S. M. Verbitskaya, Surfaces on Oeljeklaus-Toma manifolds, arXiv:1306.2456 (2013).
S. M. Verbitskaya, Curves on the Oeljeklaus-Toma manifolds, Functional Analysis and Its Applications 48 (2014), no. 3, 223-226.
DOI: https://doi.org/10.52846/ami.v52i1.2151