∆λ−Statistical convergence of order α on time scales

Büşra Nur Er, Yavuz Altin

Abstract


In this study, we introduce the notions ∆λ−statistical convergence of order α (for αϵ(0,1])  and λp−summable of order α (for αϵ(0,1]) on an arbitrary time scale. Moreover, some relations about these notions are obtained. We define ∆λ− statistically boundedness of order α (for αϵ(0,1]) on a time scale. Furthermore, We give connections between S (λ,α) T (b) , S (β,θ) T (b) and ST (b) for various sequences µ∆λ(t) and µ∆β(t) are determined in class Λ.

Full Text:

PDF

References


Y. Altin, B.N. Er, and E. Yilmaz, Δλ-statistical boundedness on time scales, Comm. Statist. Theory Methods 50 (3) (2021), no. 3, 738-746. DOI: 10.1080/03610926.2019.1640880

Y. Altin, Some results on λ-statistical convergence on time scales, Maejo Int. J. Sci. Technol. 11 (2017), no. 1, 90-96.

O. Batit, Function spaces and their dual spaces on time scales, Int. J. Diference Equ. 2 (2007), no. 1, 13-23.

V.K. Bhardwaj and S. Gupta, On some generalizations of statistical boundedness, J. Inequal. Appl. 2014 (2014), Article 12.

M. Bohner and M. Peterson, Dynamic equations on time scales, an introduction with applications, Birkhauser, Boston, 2001.

A. Cabada and D.R. Vivero, Expression of the Lebesque Δ-integral on time scales as a usual Lebesque integral; application to the calculus of Δ-antiderivates, Math. Comput. Modelling 43 (2006), no. 1-2, 194 -207.

M. Cichon and A. Yantir, On the convergence of sets and the approximation property for dynamic equations on time scales, Mathematica Aeterna 5 (2015), no. 5, 883-904.

J.S. Connor, The statistical and strong p-Cesàro convergence of sequences, Analysis 8 (1988), 47-63.

R. Çolak, Statistical convergence order α, Modern Methods in Analysis and Its Applications, Anamaya Pub., New Delhi (2010), 121-129.

R. Çolak, On λ-statistical convergence, Proceedings of Conference on Summability and Applications, 2011, Istanbul, Turkey, 4-5.

R. Çolak and Ç.A. Bektaș, λ-statistical convergence of α, Acta Math. Sci. Ser. B (Engl. Ed.) 31 (2011), no. 3, 953-959.

A. Deniz, Measure theory on time scales, Master of Science, Izmir Institute of Technology, Izmir, Turkey, 2007.

H. Fast, Sur la convergence statistique, Colloq. Math. 2 (1951), 241-244.

J. Fridy, On statistical convergence, Analysis 5 (1985), 301-313.

J.A. Fridy and C. Orhan, Statistical limit superior and limit inferior, Proc. Amer. Math. Soc. 125 (1997), no. 12, 3625-3631.

A.D. Gadjiev and C. Orhan, Some approximation theorems via statistical convergence, Rocky Mountain J. Math. 32 (2002), no. 1, 129-138.

G.Sh. Guseinov, Integration on time scales, J. Math. Anal. Appl. 285 (2003), no. 1, 107-127.

S. Hilger, Analysis on measure chains-a unified approach to continuous and discrete calculus, Results Math. 18 (1990), no. 1-2, 18-56.

L. Leindler, Uber die verallgemeinerte de la Vallée-Poussinsche Summierbarkeit allgemeiner Orthogonalreihen, (German) Acta Math. Acad. Sci. Hungar. 16 (1965), 375-387.

I.J. Maddox, Statistical convergence in a locally convex space, Math. Proc. Cambridge Philos. Soc. 104 (1988), no. 1, 141-145.

H.I. Miller, A measure theoretical subsequence characterization of statistical convergence, Trans. Amer. Math. Soc. 347 (1995), no. 5, 1811-1819.

F. Moricz, Statistical limits of measurable functions, Analysis 24 (2004), 207-219.

M. Mursaleen, λ-statistical convergence, Math. Slovaca 50 (2000), no. 1, 111-115.

I. Niven and H.S. Zuckerman, An introduction to the theory of numbers, John Wiley and Sons, Inc. New York, 1960.

F. Nuray, λ-strongly summable and λ-statistically convergent functions, Iran. J. Sci. Technol. Trans. A Sci. 34 (2010), no. 4, 335-338.

D. Rath and B.C. Tripathy, On statistically convergent and statistically Cauchy sequences, Indian J. Pure Appl. Math. 25 (1994), no. 4, 381-386.

I.J. Schoenberg, The integrability of certain functions and related summability methods, Amer. Math. Monthly 66 (1959), 361-375.

M.S. Seyyidoglu and N.Ö. Tan, A note on statistical convergence on time scale, J. Inequal. Appl. 2012 (2012), Article 219.

M.S. Seyyidoglu and N.Ö. Tan, On a generalization of statistical cluster and limit points. Advances in Difference Equations 2015 (2015), Article 55. DOI 10.1186/s13662-015-0395-9

H. Steinhaus, Sur la convergence ordinaire et la convergence asymptotique, Colloquium Math. 2 (1951), 73-74.

T. Šalát, On statistically convergent sequences of real numbers, Math. Slovaca 30 (1980), no. 2, 139-150.

C. Turan and O. Duman, Statistical convergence on time scales and its characterizations, In: (Anastassiou, G., Duman, O. eds.) Advances in Applied Mathematics and Approximation Theory, Springer Proceedings in Mathematics & Statistics 41 (2013), 57-71, Springer, New York. DOI:10.1007/978-1-4614-6393-1_3

C. Turan and O. Duman, Fundamental properties of statistical convergence and Lacunary statistical convergence on time scales, Filomat 31 (2017), no. 14, 4455-4467. DOI:10.2298/FIL1714455T

E. Yilmaz, Y. Altin, and H. Koyunbakan, λ-Statistically Convergence on Time Scales, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 23 (2016), no. 1, 69-78.

A. Zygmund, Trigonometric series, Cambridge University Press, Cambridge, UK, 1979.




DOI: https://doi.org/10.52846/ami.v49i2.1296