A study on K-paracontact and (κ,μ)-paracontact manifold admitting vanishing Cotton tensor and Bach tensor

Venkatesha Venkatesha, N. Bhanumathi, C. Shruthi

Abstract


The object of the present paper is to study K-paracontact manifold admitting parallel Cotton tensor, vanishing Cotton tensor and to study Bach flatness on K-paracontact manifold.
In that we prove for a K-paracontact metric manifold $M^{2n+1}$ has parallel Cotton tensor if and only if $M^{2n+1}$ is an $\eta$-Einstein manifold and r=-2n(2n+1). Further we show that if g is an $\eta$-Einstein K-paracontact metric and if $g$ is Bach flat then $g$ is an Einstein. Also we study vanishing Cotton tensor on (k,\mu)-paracontact manifold for both k>-1 and k<-1. Finally, we prove that if $M^{2n+1}$ is a (k,\mu)-paracontact manifold for $k\neq -1$ and if $M^{2n+1}$ has vanishing Cotton tensor for $\mu \neq k$, then $M^{2n+1}$ is an $\eta$-Einstein manifold.


Full Text:

PDF

References


R. Bach, Zur Weylschen Relativitäatstheorie undder Weylschen Erweiterung des Krüummungstensorbegriffs, Math. Z. 9 (1921), 110-135.

B. Cappelletti Montano, I. Küpeli Erken, and C. Murathan, Nullity conditions in paracontact geometry, Differential Geometry and its Applications 30 (2012), 665-693.

G. Calvaruso, Homogeneous paracontact metric three-manifolds, Ill. J. Math. 55 (2011), 697-718.

G. Calvaruso and A. Perrone, Ricci solitons in three-dimensional paracontact geometry, J. Geom. Phys. 98 (2015), 1-12.

B. Cappelletti Montano and L. Di Terlizzi, Geometric structures associated to a contact metric (k,mu)-space, Pacific J. Math. 246 (2010), no. 2, 257-292.

H.D. Cao and Q. Chen, On Bach-flat gradient shrinking Ricci solitons, Duke Mathematical Journal 162 (2013), no. 6, 1149-1169.

H.D. Cao, G. Catino, Q. Chen, and C. Mantegazza, Bach-flat gradient steady Ricci solitons, Calculus of Variations 49 (2014), 125-138.

I.K. Erken and C. Murathan, A complete study of three-dimensional paracontact (k, mu, nu) -spaces, International Journal of Geometric Methods in Modern Physics 14 (2017), no. 7, 1750106.

A. Ghosh and R. Sharma, Classification of (k,mu)-contact manifolds with divergence free Cotton tensor and vanishing Bach tensor, Annales Polonici Mathematici 122 (2019), 153-163.

A. Ghosh and R. Sharma, Sasakian manifolds with purely transversal Bach tensor, J. Math. Phys. 58 (2017), Article number 103502. https://doi.org/10.1063/1.4986492

S. Kaneyuki and F.L. Williams, Almost paracontact and parahodge structures on manifolds, Nagoya Math. J. 99 (1985), 173-187.

D.S. Patra, Ricci Solitons and Paracontact Geometry, Mediterr. J. Math. 16 (2019), Article number 137. https://doi.org/10.1007/s00009-019-1419-6

H. Pedersen and A. Swann, Einstein-Weyl geometry, the Bach tensor and conformal scalar curvature, J. Reine Angew. Math. 441 (1993), 99-114. https://doi.org/10.1515/crll.1993.441.99

A. Perrone, Some results on almost paracontact metric manifolds, Mediterr. J. Math. 13 (2016), no. 5, 3311-3326. https://doi.org/10.1007/s00009-016-0687-7

V. Venkatesha and D.M. Naik, Certain results on K-paracontact and paraSasakian manifolds, Journal of Geometry 108 (2017), no. 3, 939-952. https://doi.org/10.1007/s00022-017-0387-x

S. Zamkovoy, Canonical connections on paracontact manifolds, Ann. Global Anal. Geom. 36 (2009), 37-60. https://doi.org/10.1007/s10455-008-9147-3




DOI: https://doi.org/10.52846/ami.v49i1.1336