New results on topological effect algebras

Simin Saidi Goraghani, Rajab Ali Borzooei

Abstract


In this paper, by considering the notion of effect algebra and   by using of a new  ideal in an effect algebra E, we construct a topology τ on E, and we show that (E,τ) is a topological effect algebra. Then we obtain some conditions under which that (E,τ) is a Hausdorff space. Also, we obtain some results about connected components of this topological space, and we construct  a quotient topological effect algebra.

Full Text:

PDF

References


M.K. Bennett and D.J. Foulis, Phi-symmetric effect algebras, Foundations of Physics 25 (1995), 1699-1722.

R.A. Borzooei, A. Dvureçenskij, and A.H. Sharafi, Material implications in lattice effect algebras, Information Sciences 433-434 (2018), 233-240. https://doi.org/10.1016/j.ins.2017.12.049

R.A. Borzooei, G.R. Rezaei, and N. Kouhestani, On (semi)topological BL-algebra, Iranian Journal Mathematical Science and Informatics 6 (2001), no. 1, 59-77.

R.A. Borzooei and O. Zahiri, Topology on BL-algebras, Fuzzy Sets and Systems 289 (2016), 137-150. https://doi.org/10.1016/j.fss.2014.11.014

B. Busneag, D. Piciu, and M. Istrata, The Belluce lattice associated with a bounded BCK-algebra, Journal of Algebraic Hyperstructures and Logical Algebras 1 (2021), no. 1, 1-16. https://doi.org/10.52547/HATEF.JAHLA.2.1.1

R. Cignoli, I.M.L. D'Ottaviano, and D. Mundici, Algebraic foundations of many-valued reasoning, Springer, Dordrecht, 2000.

A. Dvureçenskij and S. Pulmannová, New trends in quantum structures, Springer Dordrecht, 2000.

A. Dvureçenskij, Product effect algebras, International Journal of Theoretical Physics 10 (2002), 193-215. https://doi.org/10.1023/A:1021017905403

A. Dvureçenskij, States on pseudo effect algebras and integrals, Foundations of Physics 41 (2011), 1143-1162. https://doi.org/10.1007/s10701-011-9537-4

A. Dvureçenskij and T. Vetterlein, Pseudo effect algebras. I. Basic properties, International Journal of Theoretical Physics 40 (2001), 685-701. https://doi.org/10.1023/A:1004192715509

A. Dvureçenskij and T. Vetterlein, Pseudo effect algebras. II. Group represetation, International Journal of Theoretical Physics 40 (2001), 703-726. https://doi.org/10.1023/A:1004144832348

D.J. Foulis and M.K. Bennett, Effect algebras and unsharp quantum logics, Foundations of Physics 24 (1994), no. 10, 1331-1352.

D.J. Foulis, S. Pulmannova, and E. Vincekova, Unitizations of generalized pseudo effect algebras and their ideals, Order 33 (2016), 311-332. https://doi.org/10.1007/s11083-015-9368-6

Z. Ma, Note on ideals of effect algebras, Information Sciences 5 (2009), 505-507. https://doi.org/10.1016/j.ins.2008.07.018

J. R. Munkres, Topology a first course, Prentice-Hall, 1974.

M.R. Rakhshani, R.A. Borzooei, and G.R. Rezaei, On topological effect algebras, Italian Journal of Pure and Applied Mathematics 39 (2018), 312-325.

S. Saidi Goraghani and R.A. Borzooei, Module structures on effect algebras, Bulletin of the Section of Logic 49(3) (2020), 269-290. https://doi.org/10.18778/0138-0680.2020.17




DOI: https://doi.org/10.52846/ami.v49i1.1482