On lacunary statistical convergence of sequences in gradual normed spaces

Chiranjib Choudhury, Shyamal Debnath

Abstract


In this paper, we introduce and investigate the notion of lacunary statistical convergence of sequences in gradual normed linear spaces. We study some of its basic properties and some inclusion relations. In the end, we introduce the notion of lacunary statistical Cauchy sequences and prove that it is equivalent to the notion of lacunary statistical convergence.


Full Text:

PDF

References


F. Aiche and D. Dubois, Possibility and gradual number approaches to ranking methods for random fuzzy intervals, Commun. Comput. Inf. Sci. 299 (2012), 9-18. https://doi.org/10.1007/978-3-642-31718-7_2

C. Choudhury and S. Debnath, On I-convergence of sequences in gradual normed linear spaces, Facta Univ. Ser. Math. Inform. 36 (2021), no. 3, 595-604. https://doi.org/10.22190/FUMI210108044C

J. Connor, The statistical and strong p-Cesaro convergence of sequences, Analysis 8 (1988), no. 1-2, 47-63.

D. Dubois and H. Prade, Gradual elements in a fuzzy set, Soft Comput. 12 (2007), no. 2, 165-175. https://doi.org/10.1007/s00500-007-0187-6

A. Esi and M. Acikgoz, On some double lacunary strong Zweier convergent sequence spaces, An. Univ. Craiova Ser. Mat. Inform. 40 (2013), no. 2, 121-127.

M. Ettefagh, F.Y. Azari, and S. Etemad, On some topological properties in gradual normed spaces, Facta Univ. Ser. Math. Inform. 35 (2020), no. 3, 549-559. https://doi.org/10.22190/FUMI2003549E

M. Ettefagh, S. Etemad, and F.Y. Azari, Some properties of sequences in gradual normed spaces, Asian-Eur. J. Math 1 (2020), no. 4, 2050085. https://doi.org/10.1142/S1793557120500850

J. Fortin, D. Dubois, and H. Fargier, Gradual numbers and their application to fuzzy interval analysis, IEEE Trans. Fuzzy Syst. 16 (2008), no. 2, 388-402.

A.R. Freedman and J.J. Sember, Densities and summability, Pacific J. Math. 95 (1981), no. 2, 293-305.

A.R. Freedman, J.J. Sember, and M. Raphael, Some Cesaro type summability spaces, Proc. Lond. Math. Soc. 37 (1978), no. 3, 508-520.

J.A. Fridy, On statistical convergence, Analysis 5 (1985), no. 4, 301-313.

J.A. Fridy, Statistical limit points, Proc. Amer. Math. Soc. 118 (1993), no. 4, 1187-1192.

J.A. Fridy, Lacunary statistical summability, J. Math. Anal. Appl. 173 (1993), no. 2, 497-504.

J.A. Fridy and C. Orhan, Lacunary statistical convergence, Pacific J. Math. 160 (1993), no. 1, 43-51.

B. Hazarika and A. Esi, On fuzzy real valued asymptotically equivalent sequences and lacunary ideal convergence, An. Univ. Craiova Ser. Mat. Inform. 41 (2014), no. 2, 209-225.

B. Hazarika and A. Esi, Lacunary ideal quasi Cauchy sequences, An. Univ. Craiova Ser. Mat. Inform. 45 (2018), no. 2, 220-231.

I.S. Ibrahim and R. Colak, On strong lacunary summability of order α with respect to modulus functions, An. Univ. Craiova Ser. Mat. Inform. 48 (2021), no. 1, 127-136.

L. Lietard and D. Rocacher, Conditions with aggregates evaluated using gradual numbers, Control Cybernet. 38 (2009), no. 2, 395-417.

M. Mursaleen and C. Belen, On statistical lacunary summability of double sequences, Filomat 28 (2014), no. 2, 231-239.

M. Mursaleen and S.A. Mohiuddine, On lacunary statistical convergence with respect to the intuitionistic fuzzy normed space, J. Comput. Appl. Math. 233 (2009), no. 2, 142-149.

S. Pehlivan, M. Gurdal, and B. Fisher, Lacunary statistical cluster points of sequences, Math. Commun. 11 (2006), no. 1, 39-46.

K. Raj, A. Esi, and S. Pandoh, Applications of Riesz mean and lacunary sequences to generate Banach spaces and AK-BK spaces, An. Univ. Craiova Ser. Mat. Inform. 46 (2019), no. 1, 150-163.

I. Sadeqi and F.Y. Azari, Gradual normed linear space, Iran. J. Fuzzy Syst. 8 (2011), no. 5, 131-139.

E. Savas and S. Borgohain, On strongly almost lacunary statistical A-convergence defined by a Musielak-Orlicz function, Filomat 30 (2016), no. 3, 689-697.

E. Savas and S. Debnath, Lacunary Statistically ϕ-convergence, Note Math. 39 (2019), no. 2, 111-119.

H. Sengul and M. Et, f-lacunary statistical convergence and strong f-lacunary summability of order α, Filomat 32 (2018), no. 13, 4513-4521.

E.A. Stock, Gradual numbers and fuzzy optimization, Ph.D. thesis, University of Colorado Denver, Denver, America (2010).

B.C. Tripathy, B. Hazarika, and B. Choudhary, Lacunary I-convergent sequences, Kyungpook Math. J. 52 (2012), no. 4, 473-482.

B.C. Tripathy and M. Sen, On lacunary strongly almost convergent double sequences of fuzzy numbers, An. Univ. Craiova Ser. Mat. Inform. 42 (2015), no. 2, 254-259.

L.A. Zadeh, Fuzzy sets, Inf. Control 8 (1965), no. 3, 338-353.




DOI: https://doi.org/10.52846/ami.v49i1.1518