On lacunary statistical convergence of sequences in gradual normed spaces
Abstract
Full Text:
PDFReferences
F. Aiche and D. Dubois, Possibility and gradual number approaches to ranking methods for random fuzzy intervals, Commun. Comput. Inf. Sci. 299 (2012), 9-18. https://doi.org/10.1007/978-3-642-31718-7_2
C. Choudhury and S. Debnath, On I-convergence of sequences in gradual normed linear spaces, Facta Univ. Ser. Math. Inform. 36 (2021), no. 3, 595-604. https://doi.org/10.22190/FUMI210108044C
J. Connor, The statistical and strong p-Cesaro convergence of sequences, Analysis 8 (1988), no. 1-2, 47-63.
D. Dubois and H. Prade, Gradual elements in a fuzzy set, Soft Comput. 12 (2007), no. 2, 165-175. https://doi.org/10.1007/s00500-007-0187-6
A. Esi and M. Acikgoz, On some double lacunary strong Zweier convergent sequence spaces, An. Univ. Craiova Ser. Mat. Inform. 40 (2013), no. 2, 121-127.
M. Ettefagh, F.Y. Azari, and S. Etemad, On some topological properties in gradual normed spaces, Facta Univ. Ser. Math. Inform. 35 (2020), no. 3, 549-559. https://doi.org/10.22190/FUMI2003549E
M. Ettefagh, S. Etemad, and F.Y. Azari, Some properties of sequences in gradual normed spaces, Asian-Eur. J. Math 1 (2020), no. 4, 2050085. https://doi.org/10.1142/S1793557120500850
J. Fortin, D. Dubois, and H. Fargier, Gradual numbers and their application to fuzzy interval analysis, IEEE Trans. Fuzzy Syst. 16 (2008), no. 2, 388-402.
A.R. Freedman and J.J. Sember, Densities and summability, Pacific J. Math. 95 (1981), no. 2, 293-305.
A.R. Freedman, J.J. Sember, and M. Raphael, Some Cesaro type summability spaces, Proc. Lond. Math. Soc. 37 (1978), no. 3, 508-520.
J.A. Fridy, On statistical convergence, Analysis 5 (1985), no. 4, 301-313.
J.A. Fridy, Statistical limit points, Proc. Amer. Math. Soc. 118 (1993), no. 4, 1187-1192.
J.A. Fridy, Lacunary statistical summability, J. Math. Anal. Appl. 173 (1993), no. 2, 497-504.
J.A. Fridy and C. Orhan, Lacunary statistical convergence, Pacific J. Math. 160 (1993), no. 1, 43-51.
B. Hazarika and A. Esi, On fuzzy real valued asymptotically equivalent sequences and lacunary ideal convergence, An. Univ. Craiova Ser. Mat. Inform. 41 (2014), no. 2, 209-225.
B. Hazarika and A. Esi, Lacunary ideal quasi Cauchy sequences, An. Univ. Craiova Ser. Mat. Inform. 45 (2018), no. 2, 220-231.
I.S. Ibrahim and R. Colak, On strong lacunary summability of order α with respect to modulus functions, An. Univ. Craiova Ser. Mat. Inform. 48 (2021), no. 1, 127-136.
L. Lietard and D. Rocacher, Conditions with aggregates evaluated using gradual numbers, Control Cybernet. 38 (2009), no. 2, 395-417.
M. Mursaleen and C. Belen, On statistical lacunary summability of double sequences, Filomat 28 (2014), no. 2, 231-239.
M. Mursaleen and S.A. Mohiuddine, On lacunary statistical convergence with respect to the intuitionistic fuzzy normed space, J. Comput. Appl. Math. 233 (2009), no. 2, 142-149.
S. Pehlivan, M. Gurdal, and B. Fisher, Lacunary statistical cluster points of sequences, Math. Commun. 11 (2006), no. 1, 39-46.
K. Raj, A. Esi, and S. Pandoh, Applications of Riesz mean and lacunary sequences to generate Banach spaces and AK-BK spaces, An. Univ. Craiova Ser. Mat. Inform. 46 (2019), no. 1, 150-163.
I. Sadeqi and F.Y. Azari, Gradual normed linear space, Iran. J. Fuzzy Syst. 8 (2011), no. 5, 131-139.
E. Savas and S. Borgohain, On strongly almost lacunary statistical A-convergence defined by a Musielak-Orlicz function, Filomat 30 (2016), no. 3, 689-697.
E. Savas and S. Debnath, Lacunary Statistically ϕ-convergence, Note Math. 39 (2019), no. 2, 111-119.
H. Sengul and M. Et, f-lacunary statistical convergence and strong f-lacunary summability of order α, Filomat 32 (2018), no. 13, 4513-4521.
E.A. Stock, Gradual numbers and fuzzy optimization, Ph.D. thesis, University of Colorado Denver, Denver, America (2010).
B.C. Tripathy, B. Hazarika, and B. Choudhary, Lacunary I-convergent sequences, Kyungpook Math. J. 52 (2012), no. 4, 473-482.
B.C. Tripathy and M. Sen, On lacunary strongly almost convergent double sequences of fuzzy numbers, An. Univ. Craiova Ser. Mat. Inform. 42 (2015), no. 2, 254-259.
L.A. Zadeh, Fuzzy sets, Inf. Control 8 (1965), no. 3, 338-353.
DOI: https://doi.org/10.52846/ami.v49i1.1518