A modified Susceptible-Infected-Recovered epidemiological model

Ion Bica, Zhichun Zhai, Rui Hu

Abstract


Objectives

This paper proposes an infectious disease model incorporating two new model compartments, hospitalization, and intensive care unit.

Methods

The model dynamics are analyzed using the local and global stability theory of nonlinear systems of ordinary differential equations. For the numerical simulations, we used the Rosenbrock method for stiff initial value problems. We obtained numerical simulations using MAPLE software. The returned MAPLE procedure was called only for points inside the range on which the method evaluated the numerical solution of the system with specified initial conditions.

Results

  • We proposed a new model to describe the dynamics of microparasitic infections.
  • Numerical simulations revealed that the proposed model fitted with the expected behaviour of mi- croparasitic infections with ”acute epidemicity.”
  • The numerical simulations showed consistency in the behaviour of the system. 

Conclusions

  • The model proposed has ”robust” dynamics, supported by the global stability of its endemic state and the consistency of the numerical simulations regarding the model’s timeevolution behaviour.
  • The introduction of the hospitalization and intensive care unit compartments in the proposed model revealed that it is essential to consider such policies in the case of ”acuteepidemicity” of microparasitic infections.

Full Text:

PDF

References


R.M. Anderson, Discussion: The Kermack-McKendrick epidemic threshold theorem, Bulletin of Mathematical Biology 53 (1991), no. 1-2, 3–32.

S.B. Bastos and D.O. Cajueiro, Modeling and forecasting the early evolution of the Covid-19 pandemic in Brazil, Scientific Reports. Nature Research 10 (2020), 19457. DOI: 10.1038/s41598- 020-76257-1

G.C. Calafiore, C. Novara, and C. Possieri, A time-varying SIRD model for the COVID-19 contagion in Italy, Annual Reviews in Control 50 (2020), 361—372. DOI: 10.1016/j.arcontrol.2020.10.005

J. Cao, L. Wang, and J. Xu, Robust estimation for ordinary differential equation models, Biometrics 67 (2011), no. 4, 1305–1313. DOI: 10.1111/j.1541-0420.2011.01577.x

China Population 1950-2021. https://www.macrotrends.net/countries/CHN/china/population

C. Castillo-Chavez, Z. Feng, and W. Huang, In: (C. Castillo-Chavez, P. Driessche, D. Kirschner, A.A. Yakubu, editors) Mathematical Approaches for Emerging and Reemerging Infection Dis- eases: an Introduction, Vol. 125, New York: Springer, 2002. 31—65. (The IMA Volumes in Mathematics and Its Applications). eBook ISBN: 978-1-4613-0065-6.

S. Gugushvili and C.A. Klaassen, √n-consistent parameter estimation for systems of ordinary differential equations: bypassing numerical integration via smoothing, Bernoulli 18 (2012), no. 3, 1061–1098. DOI: 10.3150/11-BEJ362

E. Hairer and G. Wanner, Solving Ordinary Differential Equations II, Stiff and Differential- Algebraic Problems, Springer, 1996. ISBN: 3-540-60452-9.

H.C. Hemker, and B. Hess, Analysis and Simulation of Biochemical Systems, Proc. FEBS Meet., North-Holland, Amsterdam, Vol. 25, 59, 1972.

H.W. Hethcote, Three Basic Epidemiological Models, Applied Mathematical Ecology. Springer-Verlag, Berlin, 18 (1989), 119–144. DOI: 10.1007/978-3-642-61317-3 5

H. W. Hethcote, The Mathematics of Infectious Diseases, SIAM Review 42 (2000), no. 4, 599–653. DOI: 0.1137/S0036144500371907

K-q. Kam, C.F. Yung, L. Cui, R.T. Pin Lin, T.M. Mak, M. Maiwald, J. Li, C.Y. Chong, K. Nadua, N.W. Hui Tan, and K.C. Thoon, A Well Infant With Coronavirus Disease 2019 With High Viral Load, Clinical Infectious Diseases 71 (2020), no. 15, 847—849. DOI: 10.1093/cid/ciaa201

W.O. Kermack and A.G. McKendrick, A contribution to the mathematical theory of epidemics. Royal Society. Proceedings of the Royal Society A, Mathematical, Physical and Engineering Sciences 115 (1927), no. 772, 700–721. DOI: 10.1098/rspa.1927.0118

A. Korobeinikov and P.K. Maini, A Lyapunov Function and Global Properties for SIR and SEIR Epidemiological Models with Nonlinear Incidence, Mathematical Biosciences and Engi- neering 1 (2004), No. 1, 57–60. DOI: 10.3934/mbe.2004.1.57

S. Ma and Y. Xia, Mathematical Understanding Of Infectious Disease Dynamics, Lecture Notes Series (National University of Singapore, Institute for Mathematical Sciences) Vol. 16, World Scientific Publishing Company, USA: New Jersey 2009.

V. Martinez, A Modified SIRD Model to Study the Evolution of the COVID-19 Pandemic in Spain, Symmetry 2021, 13 (2021), 723. DOI: 10.3390/sym13040723

Y. Qiu, T. Hu, B. Liang, and H. Cui, Robust estimation of parameters in nonlinear ordinary differential equation models, Journal of Systems Science and Complexity 29 (2016), no. 1, 41–60. DOI: 10.1007/s11424-015-4045-9

P. Quah, A. Li, and J. Phua, Mortality rates of patients with COVID-19 in the intensive care unit: a systematic review of the emerging literature, Critical Care 24 (2020), 285. DOI: 10.1186/s13054-020-03006-1

D. Sen and D. Sen, Use of a Modified SIRD Model to Analyze COVID-19 Data, Ind. Eng. Chem. Res. 60 (2021), no. 11, 4251-–4260. DOI: 10.1021/acs.iecr.0c04754

J.O. Ramsay, G. Hooker, D. Campbell, and J. Cao, Parameter estimation for differential equa-tions: a generalized smoothing approach. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 69 (2007), no. 5, 741–796. DOI: 10.1111/j.1467-9868.2007.00610.x

R. Ross, An Application of the Theory of Probabilities to the Study of a priory Pathometry – Part I. Royal Society. Proceedings of the Royal Society A, Mathematical, Physical and Engineering Sciences 92 (1915), no. 638, 204–730. DOI: 10.1098/rspa.1916.0007

R. Ross and H.P. Hudson, An Application of the Theory of Probabilities to the Study of a priory Pathometry - Part II, Royal Society. Proceedings of the Royal Society A, Mathematical, Physical and Engineering Sciences 93 (1917), no. 650, 212–225. DOI: 10.1098/rspa.1917.0014

R. Ross and H.P. Hudson, An Application of the Theory of Probabilities to the Study of a priory Pathometry - Part III, Royal Society. Proceedings of the Royal Society A, Mathematical, Physical and Engineering Sciences 89 (1917), no. 621, 225–240. DOI: 10.1098/rspa.1917.0015

L.F. Shampine, Implementation of Rosenbrock Methods, ACM transactions on Mathematical Software 8 (1982), no. 2, 93–113. DOI: 10.2172/6754358

L.F. Shampine and R.M. Corless, Initial Value Problems for ODEs in Problem Solving Environments. Journal of Computational and Applied Mathematics 125 (2000), 31–40. DOI: 10.1016/S0377-0427(00)00456-8

Z. Shuai and P. van den Driessche, Global stability of infectious disease models using Lyapunov functions, SIAM Journal on Applied Mathematics 73 (2013), no. 4, 1513-1532. DOI: 10.1137/120876642

W.J. Stortelder, Parameter estimation in dynamic systems, Mathematics and Computers in Simulation 42 (1996), no. 2-3, 135–142. DOI: 10.1016/0378-4754(95)00117-4

P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Mathematical Biosciences 180 (2002), 29–48. DOI: 10.1016/S0025-5564(02)00108-6

World Population Review, https://worldpopulationreview.com




DOI: https://doi.org/10.52846/ami.v49i2.1560