On the nonhomogeneous wavelet bi-frames for reducing subspaces of Hs(K)
Abstract
Ahmad and Shiekh in Filomat 34: 6(2020), 2091-2099 have constructed dual wavelet frames in Sobolev spaces on local fields of positive characteristic. We continued the study and provided the characterization of nonhomogeneous wavelet bi-frames. First of all we introduce the reducing subspaces of Sobolev spaces over local fields of prime characteristics and then provide the way to characterize the nonhomogeneous wavelet bi-frames over such fields. Our results are better than those established by Ahmad and Shiekh.
Full Text:
PDFReferences
I. Ahmad and N.A. Sheikh, Dual wavelet frames in Sobolev spaces on local fields of positive characteristic, Filomat 34 (2020), 2091-2099.
O. Ahmad, N.A. Sheikh, and M.A. Ali, Nonuniform nonhomogeneous dual wavelet frames in Sobolev spaces in L2(K), Afrika Math. (2020). DOI: 10.1007/s13370-020-00786-1
O. Ahmad, N.A. Sheikh, On Characterization of nonuniform tight wavelet frames on local fields, Anal. Theory Appl. 34 (2018), 135-146.
O. Ahmad, M.Y. Bhat, and N.A. Sheikh, Construction of Parseval Framelets Associated with GMRA on Local Fields of Positive Characteristic, Num. Funct. Anal Optimiz. 42 (2021), no. 3, 344-370. DOI: 10.1080/01630563.2021.1878370
M.Y. Bhat, Characterization and Wavelet Packets Associated with VN-MRA on L2(K;CN), Azer. J. Math. 11 (2021), no. 2, 3-24.
M.Y. Bhat, Multiwavelets on Local Fields of Positive Characteristic, Annal. Univ. Craiova, Math. Comp. Scien. Series 47 (2020), no. 2, 276-284.
M.Y. Bhat, A Short Note on Wavelet Frames Based on FMRA on Local Fields, J. Math. (2020), Article 3957064.
M.Y. Bhat, Nonstationary Multiresolution Analysis on Local Fields of Prime Characteristic, Acta Scien. Math. 86 (2020), 303-320.
M.Y. Bhat, Nonuniform Discrete Wavelets on Local Fields of Positive Characteristic, Comp. Anal. Oper. Theory, 13 (2019), 2203-2208.
M.Y. Bhat, Dual Wavelets Associated with Nonuniform MRA, Tamk. J. Math. 50 (2019), no. 2, 119-132.
M.Y. Bhat, Pair of Dual Wavelet Frames on Local Fields, Acta Scien. Math. 85 (2019), 271-289.
M.Y. Bhat, Tight A_ne, Quasi-A_neWavelet Frames on Local Fields of Positive Characteristic, Inter. J. Func. Anal. Oper. Theory Appl. 11 (2019), no. 1, 13-31.
M.Y. Bhat, Necessary Condition and Sufficient Conditions for Nonuniform Wavelet Frames on L2(K), Inter. J. Wavelets, Multires. Info. Process 16 (2018), no. 1, Article 1850005. DOI: 10.1142/S0219691318500054
B. Behera and Q. Jahan, Multiresolution analysis on local fields and characterization of scaling functions, Adv. Pure Appl. Math. 3 (2012), no. 2, 181-202.
B. Behera and Q. Jahan, Characterization of wavelets and MRA wavelets on local fields of positive characteristic, Collect. Math. 66 (2015), no. 1, 33-53.
J.J. Benedetto and S. Li, The theory of multiresolution analysis frames and applications to filter banks, App. Comput. Harmon. Anal. 5 (1998), 389-427.
J.J. Benedetto and R.L. Benedetto, A wavelet theory for local fields and related groups, J. Geom. Anal. 14 (2004), 423-456.
O. Christensen, An introduction to frames and Riesz bases, New York, Springer, 2003.
C.K. Chui and X. Shi, Orthonormal wavelets and tight frames with arbitrary real dilations. Appl. Comput. Harmon. Anal. 9 (2000), 243-264.
I. Daubechies, Ten lecture on wavelets, Philadelphia(PA), SIAM, 1992.
R.J. Duffin and A.C. Shaeffer, A class of nonharmonic Fourier series, Trans. A. M. Soc. 72 (1952), 341-366.
B. Han, Pairs of frequency based nonhomogeneous dual wavelet frames in the distribution space, Appl. Comput. Harmon. Anal. 29 (2010), 330-353.
B. Han and Z. Shen, Nonhomogeneous wavelet systems in high dimensions, Appl. Comput. Harmon. Anal. 32 (2012), 169-196.
H.F. Jia and J. Zhang, A characterization of nonhomogeneous wavelet bi-frames for reducing subspaces of Sobolev spaces, J. Ineq. Appl 55 (2021).
D. Li and H.K. Jiang The necessary condition and sufficient conditions for wavelet frame on local fields, J. Math. Anal. Appl. 345 (2008), 500-510.
N.K. Shukla, S.C. Maury, and S. Mittal, Semi-orthogonal Parseval Wavelets Associated with GMRAs on Local Fields of Positive Characteristic, Mediterr. J. Math. 16 (2019), Article 120. DOI: 10.1007/s00009-019-1383-1
N.K. Shukla and S.C. Maury, Super-wavelets on local fields of positive characteristic, Math. Nachr. 291 (2018), no. 4, 704-719.
M.H. Taibleson, Fourier Analysis on Local Fields, Princeton University Press, Princeton, NJ, 1975.
DOI: https://doi.org/10.52846/ami.v49i2.1615