Some fixed point results with integral type (H, ψ)F -contraction
Abstract
Full Text:
PDFReferences
O. Acar, Some Fixed-Point Results via Mix-Type Contractive Condition, Journal of Function Spaces 2021 (2021), Article ID 5512254. DOI: 10.1155/2021/551225
O. Acar and S. Coșkun, Generalized multivalued integral type contraction on weak partial metric space, Tbilisi Math. J. 13 (2020), no. 3, 145-151. DOI: 10.32513/tbilisi/1601344904
S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fund. Math. 3 (1922), 133-181.
A. Branciari, A fixed point theorem for mappings satisfying a general contractive condition of integral type, Int.J. Math. Math. Sci. 29 (2002), 531-536. DOI:10.1155/S0161171202007524
Lj.B. Cirić, A generalization of Banach's contraction principle, Proceedings of the American Mathematical Society 45 (1974), 267-273.
E. Karapınar, P. Shahi, and K. Taș, Generalized α-ϕ-contractive type mappings of integral type and related fixed point theorems, J. of Ineq. and Appl. 2014 (2014), Article 160, 1-18.
S. Chauhan and E. Karapınar, Some integral type common fixed point theorems satisfying α-ϕ-contractive conditions, Bull. Belg. Math. Soc. Simon Stevin 21 (2014), no. 4, 593-612.
J. Jachymski, Remarks on contractive conditions of integral type, Nonlinear Anal. 71 (2009), 1073-1081. DOI: 10.1016/j.na.2008.11.046
M. Jleli, B. Samet, and C. Vetro, Fixed point theory in partial metric spaces via fixed point's concept in metric spaces, J. Inequal. Appl. 2014 (2014), Article 426.
Z. Liu, Z.X. Li, S. M. Kang, and SY. Cho, Fixed point theorems for mappings satisfying contractive conditions of integral type and applications, Fixed Point Theory Appl. 2011 (2011), Article ID 64. doi:10.1186/1687-1812-2011-64.
Z. Liu, J. Li, and S.M. Kang, Fixed point theorems of contractive mappings of integral type, Fixed Point Theory and Applications 2013 (2013), Article ID 300.
D. Reem, S. Reich, and A.J. Zaslavski, Two Results in Metric Fixed Point Theory, J. Fixed Point Theory Appl. 1 (2007), 149-157.
S. Reich and A.J. Zaslavski, A Fixed Point Theorem for Matkowski Contractions, Fixed Point Theory 8 (2007), 303-307.
I.A. Rus, A. Petrușel, and G. Petrușel, Fixed Point Theory, Cluj University Press, Cluj-Napoca, 2008.
C. Vetro, A fixed-point problem with mixed-type contractive condition, Constructive Mathematical Analysis 3 (2020), no. 1, 45-52.
C. Vetro and F. Vetro, Metric or partial metric spaces endowed with a nite number of graphs: a tool to obtain xed point results, Topology Appl. 164 (2014), 125-137.
D. Wardowski, Fixed points of a new type of contractive mappings in complete metric spaces, Fixed Point Theory Appl. 2012 (2012), Article ID 94.
DOI: https://doi.org/10.52846/ami.v50i1.1618