A study on strong AI-statistical convergence of sequences in probabilistic metric spaces

Prasanta Malik, Samiran Das

Abstract


In this paper using a non-negative regular summability matrix A and a non-trivial admissible ideal I in N we study some basic properties of strong AI-statistical convergence and strong AI-statistical Cauchyness of sequences in probabilistic metric spaces not done earlier. We also introduce the notion of strong AI∗-statistical Cauchyness and study its relationship with strong AI-statistical Cauchyness. Further we study some basic properties of strong AI-statistical limit points and strong AI-statistical cluster points of a sequence in probabilistic metric spaces.


Full Text:

PDF

References


A. Ghosh and S. Das, Strongly λ-statistically and strongly Vall´ee-Poussin pre-Cauchy sequences in probabilistic metric spaces, Tamkang J. Math. 53 (2021). DOI:10.5556/j.tkjm.53.2022.3893

A. Ghosh and S. Das, Some further studies on strong I_λ-statistical convergence in probabilistic metric spaces, Analysis 42 (2022), no. 1, 11–22.

A. Bartoszewicz, P. Das, and S. Glab, On matrix summability of spliced sequences and A-density of points, Linear Algebra Appl. 487 (2015), 22–42.

J. Connor and J. Kline, On statistical limit points and the consistency of statistical convergence, J. Math. Anal. Appl. 197 (1996), 392–399.

P. Das, K. Dutta, V. Karakaya, and S. Ghosal, On some further generalizations of strong convergence in probabilistic metric spaces using ideals, Abstract and App. Anal. 2013 (2013), Article ID 765060. DOI: 10.1155/2013/765060

K. Demirci, A-statistical core of a sequence, Demonstratio Mathematica 33(2) (2000), 343–354.

K. Demirci, On A-statistical cluster points, Glas. Mat. 37(57) (2002), 293–301.

K. Dems, On I-Cauchy sequences, Real Analysis Exchange 30 (2004-2005), no. 1, 123–128.

K. Dutta, P. Malik, and M. Maity, Statistical Convergence of Double Sequences in Probabilistic Metric Spaces, Selcuk J. Appl. Math. 14 (2013), no. 1, 57–70.

O.H.H. Edely and M. Mursaleen, On statistical A-Cauchy and statistical A-summability via ideal, Journal of Inequalities and Applications 2021 (2021). DOI: 10.1186/s13660-021-02564-4

O.H.H. Edely, On some properties of A^I-summability and A^I*-summability, Azerbaijan J. Math. 11 (2021), no. 1, 189–200.

H. Fast, Sur la convergence statistique, Colloq. Math. 2 (1951), 241–244.

A.R. Freedman and I. J. Sember, Densities and summability, Pacific J. Math. 95 (1981), 293–305.

J.A. Fridy, On statistical convergence, Analysis 5 (1985), 301–313.

J.A. Fridy, Statistical limit points, Proc. Amer. Math. Soc. 118 (1993), no. 4, 1187–1192.

M. Gurdal and H. Sari, Extremal A-statistical limit points via ideals, Journal of the Egyptian Mathematical Society 22 (2014), 55–58.

E. Kolk, The statistical convergence in Banach spaces, Acta Comment. Univ. Tartu 928 (1991), 41–52.

P. Kostyrko, T. Salat, and W. Wilczynski, I -convergence, Real Anal. Exchange 26 (2000/2001), no. 2, 669–685.

P. Kostyrko, M. macaz, T. Salat and M. Sleziak, I -convergence and external I -limit points, Math. Slovaca 55 (2005), no. 4, 443–454.

B.K. Lahiri and P. Das, I and I*-convergence in topological spaces, Math. Bohemica 126 (2005), 153–160.

B.K. Lahiri and P. Das, I and I*-convergence of nets, Real Analysis Exchange 33 (2007/2008), no. 2, 431–442.

P. Malik and S. Das, Further results on strong λ-statistical convergence of sequences in probabilistic metric spaces, Bol. Soc. Paran. Mat. 41(2023). DOI:10.5269/bspm.52192

P. Malik and S. Das, I_λ-statistical limit point and I_λ-statistical cluster point, Malaya Journal of Matematik, 9 (2021), no. 1, 331–337.

P. Malik and S. Das, On strong A-statistical convergence in probabilistic metric spaces, arXiv (2022). DOI:10.48550/arXiv.2204.02727

P. Malik and S. Das, AI -statistical limit points and AI -statistical cluster points, Filomat 36 (2022), no. 5, 1573-1585.

K. Menger, Statistical metrics, Proc. Nat. Acad. Sci. USA 28 (1942), 535–537.

S. Pehlivan, A. Guncan, and M. A. Mamedov, Statistical cluster points of sequences in finite dimensional spaces, Czechoslovak Mathematical Journal 54(129) (2004), 95–102.

T. Salat, On statistically convergent sequences of real numbers, Math. Slovaca 30 (1980), 139–150.

E. Savas, P. Das, and S. Dutta, A note on strong matrix summability via ideals, Appl. Math. Lett. 25 (2012), 733–738.

E. Savas, P. Das, and S. Dutta, A note on some generalized summability methods, Acta Mathematica Universitatis Comenianae 82 (2017), no. 2, 297–304.

I.J. Schoenberg, The integrability of certain functions and related summability methods, Amer. Math. Monthly 66 (1959), 361–375.

B. Schweizer and A. Sklar, Statistical metric spaces, Pacific J. Math. 10 (1960), 314–334.

B. Schweizer, A. Sklar, and E. Thorp, The metrization of statistical metric spaces, Pacific J. Math. 10 (1960), 673–675.

B. Schweizer and A. Sklar, Statistical metric spaces arising from sets of random variables in Euclidean n-space, Theory of probability and its Applications 7 (1962), 447–456.

B. Schweizer and A. Sklar, Tringle inequalities in a class of statistical metric spaces, J. London Math. Soc. 38 (1963), 401–406.

B. Schweizer and A. Sklar, Probabilistic Metric Spaces, North Holland: New York, Amsterdam, Oxford, 1983.

C. Sencimen and S. Pehlivan, Strong statistical convergence in probabilistic metric spaces, Stoch. Anal. Appl. 26 (2008), 651–664.

C. Sencimen and S. Pehlivan, Strong ideal convergence in probabilistic metric spaces, Proc. Indian Acad. Sci. (Math. Sci.) 119 (2009), no. 3, 401–410.

H. Steinhus, Sur la convergence ordinatre et la convergence asymptotique, Colloq. Math. 2 (1951), 73–74.

R.M. Tardiff, Topologies for Probabilistic Metric spaces, Pacific J. Math. 65 (1976), 233–251.

E. Thorp, Generalized topologies for statistical metric spaces, Fundamenta Mathematicae 51(1962), 9–21.




DOI: https://doi.org/10.52846/ami.v50i1.1633