Periodic Gabor frames on positive half line
Abstract
Full Text:
PDFReferences
O. Ahmad, F.A. Shah, and N.A. Sheikh, Gabor frames on non-Archimedean fields, International Journal of Geometric Methods in Modern Physics 15 (2018), Art. ID 1850079 (17 pages).
O. Ahmad, M.Y. Bhat, and N.A. Sheikh, Characterization of Wavelets associated with ABMRA on L2(Rn), Annals of the University of Craiova, Mathematics and Computer Science Series, 48 (2021), no. 2, 293-306.
A. Akan and L.F. Chaparro, Multi-window Gabor expansion for evolutionary spectral analysis, IEEE Trans. on Sig. Proc. 63 (1997), no. 3, 249-262.
O. Christensen, An Introduction to Frames and Riesz Bases, Birkhäuser, Boston, 2015.
R.J. Duffin and A.C. Shaeffer, A class of nonharmonic Fourier series, Trans. Amer. Math. Soc. 72 (1952), 341-366.
I. Daubechies, A. Grossmann, and Y. Meyer, Painless non-orthogonal expansions, J. Math. Phys. 27 (1986), no. 5, 1271-1283.
Yu.A. Farkov, Orthogonal -wavelets on R+, In: Proc. Int. Conf. Wavelets and Splines, St. Peterberg State University, (2005), 4-26.
Yu.A. Farkov and E.A. Rodionov, Nonstationary wavelets related to the Walsh functions, Amer. J. Comput. Math. 2 (2012), 82-87.
Yu.A. Farkov, On wavelets related to Walsh series, J. Approx. Theory 161 (2009), 259-279.
Yu.A. Farkov, A.Yu. Maksimov, and S.A. Stoganov, On biorthogonal wavelets related to the Walsh functions, Int. J. Wavelets Multiresolut. Inf. Process. 9 (2011), no. 3, 485-499.
D. Gabor, Theory of communications, J. Inst. Elect. Engn. 93 (1946), 429-457.
J.P. Gabardo and Y.Z. Li, Density results for Gabor systems associated with periodic subsets of the real line, Jour. of Approx. Theory 157 (2009), no. 2, 172-192.
B.I. Golubov, A.V. E_mov, and V.A. Skvortsov, Walsh Series and Transforms: Theory and Applications, Kluwer, Dordrecht, 1991.
K. Gröchenig, A.J. Janssen, N. Kaiblinger, and GE. Pfander, Note on -splines, wavelet scaling functions, and Gabor frames, IEEE Trans. Informat. Theory 49 (2003), no. 12, 3318-3320.
K. Gröchenig, Foundation of Time-Frequency Analysis, Birkhäuser, Boston, 2001.
K. Gröchenig and M. Leinert, Wiener's lemma for twisted convolution and Gabor frames, J. Amer. Math. Soc. 17 (2004), no. 1, 1-18.
A. Ron and Z. Shen, Weyl-Heisenberg frames and Riesz bases in 2(R), Duke Math. J. 89 (1997), 237-282.
Meenakshi, P. Manchanda and A.H. Siddiqi, Wavelets associated with nonuniform multiresolution analysis on positive half-line, Int. J. Wavelets Multiresolut. Inf. Process. 10 (2012), no. 2, Art. ID 1250018 (27 pages).
F.A. Shah, O. Ahmad, and A. Rahimi, Frames Associated with Shift Invariant Spaces on Local Fields, Filomat 32 (2018), no. 9, 3097{3110.
F.A. Shah, Gabor frames on a half-line, J. Contemp. Math. Anal. 47 (2012), no. 5, 251{260.
F. A. Shah, O. Ahmad, and N.A. Sheikh, Orthogonal Gabor Systems on Local Fields, Filomat 31 (2017), no. 6, 5193-5201.
F. Schipp, W.R. Wade, and P. Simon, Walsh Series: An Introduction to Dyadic Harmonic Analysis, Adam Hilger, Bristol and New York, 1990.
Y.Z. Li and Q.F. Lian, Multi-window Gabor frames and oblique Gabor duals on discrete periodic sets, Sci. China 54 (2011), no. 5, 987-1010.
J. Wexler and S. Raz, Discrete Gabor expansions, Signal Process. 21 (1990), 207-220.
Y. Zhang, Walsh Shift-Invariant Sequences and p-adic Nonhomogeneous Dual Wavelet Frames in L2(R+), Results Math. 74 (2019), Art. ID 111 (26 pages).
M. Zibulski and Y.Y. Zeevi, Discrete multiwindow Gabor-type transforms, IEEE Trans. On Signal Proc. 45 (1997), no. 6, 1428-1442.
M. Zibulski and Y.Y. Zeevi, Analysis of multiwindow Gabor-type schemes by frame methods, Appl. and Comput. Harmon. Anal. 4 (1997), no. 2, 188-221.
DOI: https://doi.org/10.52846/ami.v50i1.1647