α-Schurer Durrmeyer operators and their approximation properties

Mohd Raiz, Ruchi Singh Rajawat, Vishnu Narayan Mishra

Abstract


The key goal of the present research article is to introduce a new sequence of linear positive operator i.e., $\alpha$-Schurer Durrmeyer operator and their approximation behaviour on the basis of function $\eta(z)$, where $\eta$ infinitely differentiable on $[0,1]$, $\eta(z)=0$, $\eta(1)=1$ and $\eta'(z)>0$, for all $z\in[0,1]$. Further, we calculate central moments and basic estimates for the sequence of the operators. Moreover, we discuss the rate of convergence and order of approximation in terms of modulus of continuity, smoothness, Korovkin theorem, and Peeter's K-functional. Lastly, local and global approximation properties are studied in the subsequent section.

Full Text:

PDF

References


S.N. Bernstein, Demonstration du theoreme de Weierstrass, fondee sur sur le calcul des probabilites, Commun. Soc. Math. Kharkov 13(2) (1912), 1-2.

F. Schurer, Linear Positive Operators in Approximation Theory, Dissertation, Technological University of Delft, Uitgeverij Waltman, Delft, (1965), 79 pp.

X. Chen, J. Tan, Z. Liu, and J. Xie, Approximation of functions by a new family of generalized Bernstein operators, J. Math. Anal. Appl. 450 (2017), 244-261. DOI: 10.1016/j.jmaa.2016.12.075

A.M. Acu and V.A. Radu, Approximation by certain operators linking the α-Bernstein and the genuine α-Bernstein-Durrmeyer operators, In: (N. Deo et al., Eds.) Mathematical Analysis I: Approximation Theory, Springer Proceedings in Mathematics and Statistics, Springer, 306, (2020), 77-88. DOI: 10.1007/s12215-021-07

A. Kajla and T. Acar, Modified α-Bernstein operators with better approximation properties, Ann. Funct. Anal. 10 (2019), 570-582. DOI: 10.1215/20088752-2019-0015

P.N. Agrawal, N. Bhardwaj, and P. Bawa, Bezier variant of modified - Bernstein operators, Rend. Circ. Mat. Palermo, II Ser. 71(2) (2021), 807-827. DOI: 10.1007/s12215-021-00613-x

N. Cetin and A.M. Acu, Approximation by α-Bernstein Schurer Stancu Operators, J. of Math. Inequ. 15 (2021), 845-860. DOI: 10.7153/jmi-2021-15-59

A. Aral and H. Erbay, Parametric generalization of Baskakov operators, Math. Commun. 24 (2019), 119-131.

Q. Cai and X. Xu, Shape-preserving properties of a new family of generalized Bernstein operators, J. Inequal. Appl. 2018 (2018), 1-14. DOI: 10.1186/s13660-018-1821-9

N. Cetin, Approximation and geometric properties of complex-Bernstein operator, Results Math. 74 (2019), 1-16. DOI: 10.1007/s00025-018-0953-z

R. Aslan and A. Izgi, Approximation by One and Two Variables of the Bernstein-Schurer-Type Operators and Associated GBS Operators on Symmetrical Mobile Interval, J. of Fun. Spac. 2021(3) (2021). DOI: 10.1155/2021/9979286

S.A. Mohiuddine, T. Acar, and A. Alotaibi, Construction of a new family of Bernstein-Kantorovich operators, Math. Methods Appl. Sci. 40 (2017), 7749-7759. DOI: 10.1002/mma.4559

N. Rao, M. Nasiruzzaman, M. Heshamuddin, and M. Shadab, Approximation properties by modified Baskakov-Durrmeyer operators based on parameter on α, I.J. of Sci. and Tech. 45(4) (2021), 1457-1465. DOI: 10.1007/s40995-021-01125-0

N. Rao, M. Heshamuddin, M. Shadab, and A. Srivastava, Approximation properties of bivariate Szasz Durrmeyer operators via Dunkl analogue, Filomat 35 (2021), 4515-4532. DOI: 10.2298/FIL2113515R

M. Raiz, A. Kumar, V.N. Mishra, and N. Rao, Dunkl Analogue of S_zasz-Schurer-Beta operator and their approximation behaviour, Math. Found. of Comput. 5 (2022), 315-330. DOI: 10.3934/mfc.2022007

V.N. Mishra, M. Raiz, and N. Rao, Dunkl analogue of Szasz Schurer Beta bivariate operators, Math. Found. of Comput. 6 (2023), no. 4, 651{669. DOI: 10.3934/mfc.2022037

M. Raiz, N. Rao, and V. N. Mishra, Szasz-type operators involving q-Appell polynomials, In: (S.A. Mohiuddine, B. Hazarika, H.K. Nashine, Eds.) Approximation Theory, Sequence Spaces and Applications, Springer, 2022. DOI: 10.1007/978-981-19-6116-810

A. Kajla and T. Acar, Blending type approximation by generalized Bernstein-Durrmeyer type operators, Miskolc Math. Notes. 19 (2018), 319-336. DOI: 10.1007/s00025-018-0773-1

A. Chandola, R.M. Pandey, R. Agarwal, L. Rathour, and V.N. Mishra, On some properties of the generalized -parameter mittag- leffler function, Adv. Math. Mod. Appli. 7 (2022), no. 2, 130-145. DOI: 10.18576/amis/170110

X. Chen, J. Tan, Z. Liu, and J. Xie, Approximation of functions by a new family of generalized Bernstein operators, J. Math. Anal. Appl. 450 (2017), 244-261. DOI: 10.1016/j.jmaa.2016.12.075

A.D. Gadziev, Theorems of the type of P.P. Korovkin's theorems, Mat. Zame. 20 (1976), 781-786.

P.N. Agarwal, S_.Y. Güngör and A. Kumar, Better degree of approximation By Modified Bernestin-Durrmeyer type operators, Math. Found. Comp. 5 (2022), no. 2, 75-92. DOI: 10.3934/mfc.2021024

O. Shisha and B. Bond, The degree of convergence of linear positive operators, Proc. Nat. Acad. Sci. 60 (1968), 1196-1200. DOI: 10.1073/pnas.60.4.1196

R.A. DeVore and G.G. Lorentz, Constructive Approximation, Grundlehren der mathematischen Wissenschaften, 303, Springer-Verlag, Berlin, 1993.

B. Lenze, On Lipschitz type maximal functions and their smoothness spaces, Nederl Akad. Indag. Math. 91 (1988), 53-63. DOI: 10.1016/1385-7258(88)90007-8

E. Ibikli and E. A. Gadjieva, The order of approximation of some unbounded functions by the sequence of positive linear operators, Turk. J. Math. 19 (1995), 331-337. DOI: 10.1137/0709026

A.D. Gadjiev and C. Orhan, Some approxiamtion theorems via statistical convergence, Rocky Mountain J. Math. 32 (2002), 129-138. DOI: 10.1216/rmjm/1030539612

O. Duman and C. Orhan, Some approximation by positive linear operators, Stud. Math. 16 (2004), 187-197. DOI: 10.4064/SM161-2-6

M.A. Özarslan and H.A. Ktuğlu, Local approximation for certain king type operators, Filomat 27 (2013), no. 1, 173-181. DOI: 10.2298/FIL1301173O

V.N. Mishra, K. Khatri, L.N. Mishra, and Deepmala, Inverse result in simultaneous approximation by Baskakov-Durrmeyer-Stancu operators, J. of Inequ. and Appl. 2013 (2013), Art. 586. DOI: 10.1186/1029-242X-2013-586

L.N. Mishra, A. Srivastava, T. Khan, S.A. Khan, and V.N. Mishra, Inverse Theorems For Some Linear Positive Operators Using Beta And Baskakov Basis Functions, AIP Conference Proceedings 2364 (2021), no. 1, 020-028. DOI: 10.1063/5.0062925

R.B. Gandhi, Deepmala, and V.N. Mishra, Local and global results for modi_ed Sz_asz – Mirakjan operators, Math. method. Appl. Sci. 40(7) (2017), 2491-2504. DOI: 10.1002/mma.4171

A.R. Gairola, Deepmala, and L.N. Mishra, Rate of Approximation by Finite Iterates of q- Durrmeyer Operators, Proc. Natl. Acad. Sci. India, Sect. A Phys. Sci. 86(2) (2016), 229-234. DOI: 10.1007/s40010-016-0267-z

A.R. Gairola, S. Maindola, L. Rathour, L.N. Mishra, and V.N. Mishra, Better uniform approximation by new Bivariate Bernstein Operators, International Journal of Analysis and Applications 20 (2022), 1-19. DOI: 10.28924/2291-8639-20-2022-60

A.R. Gairola, A. Singh, L. Rathour, and V.N. Mishra, Improved rate of approximation by modification of Baskakov operator, Operators and Matrices 16 (2022), no. 4, 1097-1123. DOI: 10.7153/oam-2022-16-72




DOI: https://doi.org/10.52846/ami.v50i1.1663