C12-modules via left exact preradicals

Figen Takil Mutlu, Adnan Tercan

Abstract


In this paper, we study modules with the condition that images of all submodules under a left exact preradical for the category of right modules over a ring can be essentially embedded in direct summands. This new class of modules properly contains the class of C12-modules (and hence also CS-modules and uniform modules). It is shown that any module is isomorphic to a direct summand of a module which satises the rC12 property. In contrast to CS-modules, it is shown that the class of modules with the former property is closed under essential extensions whenever any module in the new class is relative injective with respect to its essential extensions.


Full Text:

PDF

References


T. Albu and M. Iosif, Modular C11 lattices and lattice preradicals, J.Algebra Appl. 16 (2017), no. 6, 1750116.

T. Albu, M. Iosif, and A. Tercan, The conditions (Ci) in modular lattices and applications, J. Algebra Appl. 40 (2016), 1650001.

G.F. Birkenmeier, B.J. Muller, and S.T. Rizvi, Modules in which every fully invariant submodules essential in a direct summand, Comm. Algebra 30 (2002), no. 3, 13951415.

G.F. Birkenmeier, J.K Park, and S.T. Rizvi, Extensions of Rings and Modules, Birkhauser, New York, 2013.

G.F. Birkenmeier, A Tercan, and C.C. Yucel, The extending condition relative to sets of submodules, Comm. Algebra 42 (2014), 764-778.

N.V Dung, D. Huynh, P.F. Smith, and R. Wisbauer, Extending Modules, Longman, Harlow,1994.

V. Erdogdu, Distributive Modules, Canad. Math. Bull. 30(2) (1987), 1650001.

K.R. Goodearl, Ring Theory: Nonsingular Rings and Modules, Dekker, New York, 1976.

I. Kaplansky, Infinite Abelian Groups, University of Michigan Press, Ann Arbor, 1969.

R.J. Nunke, On direct products of infinite cyclic groups, Proc. Amer. Math. Soc. 13 (1962),no. 1, 66-71.

P.F. Smith and A. Tercan, Generalizations of CS-modules, Comm. Algebra 21 (1993), no. 6, 1809-1847.

B. Stenstrom, Rings of Quotients, Springer-Verlag, New York, 1975.

F. Takl and A. Tercan, Modules whose submodules are essentially embedded in direct summands, Comm. Algebra 37 (2009), no. 2, 460-469.

A. Tercan, Modules whose exact submodules are direct summands, An. St. Univ. Ovidius Constanta 8 (2000), no. 2, 143-150.

A. Tercan and C.C. Yucel, Module Theory, Extending Modules and Generalizations, Birkhauser, Basel, 2016.

R. Yasar, C11-Modules via left exact preradicals, Turkish J. Math. 45 (2021), 1757-1766.




DOI: https://doi.org/10.52846/ami.v50i1.1668