A new approach to Korovkin-type theorems based on deferred Nörlund summability mean

Priyadarsini Parida, Bidu Bhusan Jena, Susanta Kumar Paikray

Abstract


This paper aims to introduce the notions of deferred Nörlund statistical Riemann integrability and statistical deferred Nörlund Riemann summability for sequence of real-valued functions and to apply them in Korovkin-type new approximations. First, we present an inclusion theorem to understand the connection between these new notions. Then, based on these potential notions we establish new versions of Korovkin-type theorems with three algebraic test functions. Finally, we compute an example, under the consideration of a positive linear operator in association with the Bernstein polynomials to exhibit the effectiveness of our findings.


Full Text:

PDF

References


A. Aasma, H. Dutta, P.N. Natarajan, An introductory course in summability theory, John Wiley & Sons, Inc. Hoboken, USA, 2017.

W.A. Al-Salam, Operational representations for the Laguerre and other polynomials, Duke Math. J. 31 (1964), 127-142.

F. Basar, Summability theory and its applications, Bentham Science Publishers, Istanbul, 2012.

F. Basar, H. Dutta, Summable spaces and their duals, matrix transformations and geometric properties, Chapman and Hall/CRC, Taylor & Francis Group, Boca Raton, London, New York, 2020.

N. L. Braha, V. Loku, H. M. Srivastava, Λ2-Weighted statistical convergence and Korovkin and Voronovskaya type theorems, Appl. Math. Comput. 266 (2015), 675-686.

N. L. Braha, H. M. Srivastava, S. A. Mohiuddine, A Korovkin-type approximation theorem for periodic functions via the statistical summability of the generalized de la Vallée Poussin mean, Appl. Math. Comput. 228 (2014), 162-169.

H. Dutta, B. E. Rhoades (Eds.), Current topics in summability theory and applications, Springer, Singapore, 2016.

H. Fast, Sur la convergence statistique, Colloq. Math. 2 (1951), 241-244.

B. B. Jena and S. K. Paikray, Product of statistical probability convergence and its applications to Korovkin-type theorem, Miskolc Math. Notes 20 (2019), 969-984.

B.B. Jena, S. K. Paikray, Product of deferred Cesàro and deferred weighted statistical probability convergence and its applications to Korovkin-type theorems, Univ. Sci. 25 (2020), 409-433.

B.B. Jena, S. K. Paikray, U.K. Misra, Statistical deferred Ces_aro summability and its applications to approximation theorems, Filomat 32 (2018), 2307-2319.

P.P. Korovkin, Convergence of linear positive operators in the spaces of continuous functions (in Russian), Doklady Akad. Nauk. SSSR (New Ser.) 90 (1953), 961-964.

P. Parida, S.K. Paikray, B.B. Jena, Generalized deferred Cesàro equi-statistical convergence and analogous approximation theorems, Proyecciones J. Math. 39 (2020), 307-331.

H.M. Srivastava, A note on certain operational representations for the Laguerre polynomials, J. Math. Anal. Appl. 138 (1989), 209-213.

H.M. Srivastava, B. B. Jena, S. K. Paikray, Deferred Ces_aro statistical convergence of martingale sequence and Korovkin-Type approximation theorems, Miskolc Math. Notes 23 (2022), 273-286.

H.M. Srivastava, B.B. Jena, S. K. Paikray, A certain class of statistical probability convergence and its applications to approximation theorems, Appl. Anal. Discrete Math. 14 (2020), 579-598.

H.M. Srivastava, B.B. Jena, S. K. Paikray, Statistical probability convergence via the deferred Nörlund mean and its applications to approximation theorems, Rev. Real Acad. Cienc. Exactas Fis. Natur. Ser. A Mat. (RACSAM) 114 (2020), Article ID 144, 1-14.

H.M. Srivastava, B.B. Jena, S. K. Paikray, Statistical deferred Norlund summability and Korovkin-type approximation theorem, Mathematics 8 (2020), 1-11, Article ID 636.

H.M. Srivastava, B.B. Jena, S.K. Paikray, Deferred Ces_aro statistical probability convergence and its applications to approximation theorems, J. Nonlinear Convex Anal. 20 (2019), 1777-1792.

H.M. Srivastava, B.B. Jena, S.K. Paikray, U.K. Misra, Statistically and relatively modular deferred-weighted summability and Korovkin-type approximation theorems, Symmetry 11 (2019), 1-20, Article ID 448.

H.M. Srivastava, B.B. Jena, S.K. Paikray, U.K. Misra, A certain class of weighted statistical convergence and associated Korovkin type approximation theorems for trigonometric functions, Math. Methods Appl. Sci. 41 (2018), 671-683.

H.M. Srivastava, B.B. Jena, S.K. Paikray, U.K. Misra, Generalized equi-statistical convergence of the deferred Nörlund summability and its applications to associated approximation theorems, Rev. Real Acad. Cienc. Exactas Fis. Natur. Ser. A Mat. (RACSAM) 112 (2018), 1487-1501.

H.M. Srivastava, H.L. Manocha, A Treatise on Generating Functions, Halsted Press (Ellis Horwood Limited, Chichester), John Wiley and Sons, New York, Chichester, Brisbane and Toronto, 1984.

H.M. Srivastava, F. Özger, S.A. Mohiuddine, Construction of Stancu-type Bernstein operators based on Bézier bases with shape parameter λ, Symmetry 11 (2019), Article ID 316, 1-22.

H. Steinhaus, Sur la convergence ordinaire et la convergence asymptotique, Colloq. Math. 2 (1951), 73-74.

O.V. Viskov, H.M. Srivastava, New approaches to certain identities involving differential operators, J. Math. Anal. Appl. 186 (1994), 1-10.




DOI: https://doi.org/10.52846/ami.v50i2.1680