Radial solutions of an overdetermined eigenvalue problems for the polyharmonic operator

Sami Baraket, Wafa Mtaouaa, Ibrahim Zouhir

Abstract


We consider an eigenvalue problem for the polyharmonic operator, with overdetermined boundary conditions.
We give radial solutions on  balls and  those  solutions are expressed by the mean of Bessel functions.


Full Text:

PDF

References


A. Bennett, Symmetry in an overdetermined fourth order elliptic boundary value problem, SIAM J. Math. Anal. 17 (1986), 1354-1358.

R. Dalmasso, Un probléme de symétrie pour une équation biharmonique, Ann. Fac. Sci. Toulouse 11 (1990), 45-53.

R. Dalmasso, Symmetry problems for elliptic systems, Hokkaido Math. J. 25 (1996), 107-117.

S. Khenissy and I. Zouhir, On an overdetermined eigenvalue problem with MEMS operato, To Appear in Maths reports.

L.E. Payne and P.W. Schaefer, On overdetermined boundary value problems for the biharmonic operator, J. Math. Anal. Appl. 187 (1994), 598-616.

P. Pucci and J. Serrin, A general variational identity, Indiana Univ. Math. J. 35 (1986), 681-703.

J. Serrin, A symmetry problem in potential theory, Arch. Rational Mech. Anal. 43 (1971), 304-318.

H.F. Weinberger, Remark on the preceding paper of Serrin, Arch. Rational Mech. Anal. 43 (1971), 319-320.

G.N. Watson, Treatise on the Theory of Bessel functions, Second Ed., Cambridge University Press, Cambridge, England, 1962.

N.B. Willms and G.M.L. Gladwell, Saddle points and overdetermined problems for the Helmholtz equation, Zangew. Math. Phys. 45 (1994), 1-26.




DOI: https://doi.org/10.52846/ami.v50i1.1763