Lacunary statistical convergence sequences defined by D-Orlicz function
Abstract
In this article we have introduced the notion of lacunary statistical convergence
sequences defined by D-Orlicz function. In this article we have defined some sequence spaces and studied some geometric, algebraic properties of these sequence spaces like D-module, D-balanced set, D-convex set, D-absorbing set.
Full Text:
PDFReferences
A. Zygmund, Trigonometric series, Cambridge University Press 2, 1993.
P.J. Dowari, B.C. Tripathy, Lacunary sequences of complex uncertain variables defined by Orlicz functions, Proyecciones J. Math 40 (2021), no 2, 355-370.
P.J. Dowari, B.C. Tripathy, Lacunary difference sequences of complex uncertain variables, Methods of Funtional Analysis and Topology 26 (2020), no 4, 327-340.
S. Ercan, Y. Altin, C.A. Bektas, On lacunary weak statistical convergence of order α, Commun. Stat.-Theory. Meth. 49 (2020), no. 7, 1653-1664.
A.R. Freedman, J.J. Sember, M. Raphael, Some Cesaro-type summability spaces, Proceedings of the London Mathematical Society3 (1978), no. 3, 508-520.
H. Gumus, LacunaryWeak I-Statistical convergence, Gen. Math. Notes 28 (2015), no. 10, 50-58.
J. Lindenstrauss, L. Tzafriri, On Orlicz sequence space, Israel J. Math 101 (1971), 379-390.
B. Tamuli, B.C. Tripathy, Generalized difference lacunary weak convergence of sequences, Sahand Communication in Math Analysis 21 (2024), no. 2, 195-206.
R.C. Buck, Generalized asymptotic density, Amer. Jour. Math 75 (1953), 335-346.
S. Bera, B.C. Tripathy, Cesàro Convergence of Sequences of Bi-complex Numbers Using BC-Orlicz Function, Filomat 37 (2023), no 28, 9769-9775.
S. Bera, B.C. Tripathy, Statistical convergence in bi-complex valued metric space, Ural Mathematical Journal 9 (2023), no. 1, 49-63.
G.B. Price, An introduction to multicomplex spaces and functions, Marcel Dekker Inc., New York, 1991.
J. Cockle, A new imaginary in algebra, Lond. Edinb. Philos. Mag 33 (1848), no. 3, 345-349.
H. Fast, Sur la convergence statistique, Colloq Math (1951), 241-244.
J.A. Fridy, On statistical convergence, Analysis 5 (1985), 301-313.
D. Rochon, M. Shapiro, On algebraic properties of bi-complex and hyperbolic numbers, Anal. Univ. Oradea, fasc. Math 11 (2004), 71-110.
T. Salat, On statistically convergent sequences of real numbers, Math. Slov 30 (1980), 139-150.
I.J. Schoenberg, The integrability of some functions and related summability method, Amer Math Monthly 66 (1959), 361-375.
C. Segre, Le rappresentazioni reali delle forme complesse e gli enti iperalgebrici, Math. Anu 40 (1892), 413-467.
B.C. Tripathy, On statistically convergent and statistically bounded sequences, Bull. Malaysian Math. Soc.(second series) 20 (1997), 31-33.
B.C. Tripathy, M. Sen, On generalized statistically convergent sequences, Indian J. Pure Appl. Math. 32 (2001), no. 11, 1689-1694.
G.G. Lorentz, A contribution to theory of divergent sequences, Acta Math 80 (1948), 167-190.
B.C. Tripathy, P.K. Nath, Statistical convergence of complex uncertain sequences, New Mathematics and Natural Computation 13 (2017), no. 3, 359-374.
DOI: https://doi.org/10.52846/ami.v52i1.1955