Bifurcation for nonlinear eigenvalue $p$-Lapalcian problems involving $L^{q}$-norm
Abstract
In this paper, we study a global bifurcation phenomenon associated with the non-linear problem
$$
-\Delta_{p}u= \lambda \|u\|_{q}^{p-q} |u|^{q-2}u + f(x, u, \lambda)\;\; \mbox{in}\;\; \Omega, \leqno({E_f})
$$
wehre, the unknown $u\in W_0^{1,p}(\Omega)$. Under some natural hypotheses on the nonlinear perturbation $f$, we prove that $(\lambda_{1}, 0 )$
is a global bifurcation point of the above problem, where $\lambda_{1}$ stands the first eigenvalue of $(E_{\{f\equiv 0\}})$.
Full Text:
PDFReferences
P. A. Binding, Y.X. Huang, Bifurcation from eigencurves of the $p$-Laplacian, Dif. Int. Equations 8 (1995), no. 2, 415-418.
L. Brasco, G. Franzina, Convexity properties of Dirichlet integrals and Picone type inequalities, Kodai Math. J. 37 (2014), 769-799.
F. E. Browder, Fixed point theory and nonlinear problems, Bull. Amer. Math. Soc. 9 (1983), 1-39.
F.E. Browder, W.F. Petryshyn, Approximation methods and the generalised topological degree for nonlinear mapping in Banach spaces, J. Funct. Anal. 3 (1969), 217-245.
A. Callegari, A. Nachman, A nonlinear singular boundary-value problem in the theory of pseudoplastic fluids, SIAM J. Appl. Math. 38 (1980), 275-281.
M.A. Del Pino, R.F. Manesevich, Global bifurcation from the eigenvalues of the $p$-Laplacian, J. Dif. Equations 130 (1996), 235-246.
J.I. Diaz, Partial Differential Equations and Free Boundaries, Vol. I. Elliptic Equations, Research Notes in mathematics 106, Pitman, Massachusetts, 1985.
J.I. Diaz, J.M. Morel, L. Oswald, An elliptic equation with singular nonlinearity, Commun. Part. Diff. Eq. 12 (1987), 1333-1344.
P. Drábek, On the global bifurcation for a class of degenerate equations, Ann. Mat. Pura Appl. 159 (1991), 1-16.
P. Drábek, Solvability and Bifurcation of Nonlinear Equations, Pitman Res. Notes Math. Ser. 264, Longman, 1992.
P. Drábek, A. El Khalil, A. Touzani, A result on the bifurcation from the principal eigenvalue of Ap-Laplacian, Abstract and Applied Analysis 2 (1997), nos. 3-4, 185-195.
P. Drábek, A. El Khalil, A. Touzani, A bifurcation Problem for the Principal Eigencurve of the $p$-Laplacian, Applicable Analysis 72 (1999), nos. 3-4, 399-410.
P. Drábek, Y.X. Huang, Bifurcation problems for the $p$-Laplacian in $mathbb{R}^N$, Trans. Amer. Math. Soc. 349 (1997), 171-188.
E. Dibenedetto, $C^{1 + alpha}$ local regularity of weak solutions of degenerate elliptic equations, Nonlinear Analysis TMA 7 (1983), no. 8, 827–850.
.
G. Franzina, D. Lamberti, Existence and Uniqueness for a $p$-Laplacian nonlinear Eigenvalue problem, Electronic Journal of Differential Equations 2010 (2010), no. 26, 1-10.
W. Fulks, J.S. Maybee, A singular nonlinear equation, Osaka J. Math. 12 (1960), 1-19.
P.H. Rabinowitz, Some global results for nonlinear eigenvalue problems, J. Funct. Anal. 7 (1971), 487-513.
J. Serrin, Local behavior of solutions of quasilinear equations, Acta Mathematica 111 (1962), 247-302.
I.V. Skrypnik, Methods for Analysis of Nonlinear Elliptic Boundary Value problems, Trans. Math. Monogr. 139, AMS, 1994.
DOI: https://doi.org/10.52846/ami.v52i1.1977