Almost lacunary statistical and strongly almost lacunary convergence of order (β,γ) of sequences of fuzzy numbers
Abstract
Full Text:
PDFReferences
Y. Altın, λ-almost difference sequences of fuzzy numbers, Commun, Fac. Sci. Univ. Ank. Sér. A1 Math. Stat. 65 (2016), no. 2, 77-87.
H. Altınok, Y. Altın, M. Ișık, Statistical convergence and strong p-Cesàro summability of order β in sequences of fuzzy numbers, Iran. J. Fuzzy Syst. 9 (2012), no. 2, 63-73.
S. Aytar, S. Pehlivan, Statistically monotonic and statistically bounded sequences of fuzzy numbers, Inform. Sci. 176 (2006), no. 6, 734-744.
M. Basarır, S. Altundag, M. Kayıkçı, On some generalized sequence spaces of fuzzy numbers defined by a sequence of Orlicz functions, Rend. Circ. Mat. Palermo 59 (2010), no. 2, 277-287.
N.L. Braha, M. Et, Tauberian theorems for the Euler-Nörlund mean-convergent sequences of fuzzy numbers, Iran. J. Fuzzy Syst. 14 (2017), no. 2, 79-92.
M. Çınar, M. Karakaș, M. Et, On pointwise and uniform statistical convergence of order α for sequences of functions, Fixed Point Theory Appl. 2013 (2013), Article number 33.
R. Çolak, Statistical convergence of order α, In: Modern Methods in Analysis and Its Applications, Anamaya Publication, New Delhi, India, (2010), 121-129.
J.S. Connor, The statistical and strong p-Cesaro convergence of sequences, Analysis 8 (1988), 47-63.
M. Et, A. Alotaibi, S.A. Mohiuddine, On (Δm; I)-statistical convergence of order α, The Scientific World Journal (2014), 535419. https://doi.org/10.1155/2014/535419
M. Et, B.C. Tripathy, A.J. Dutta, On pointwise statistical convergence of order α of sequences of fuzzy mappings, Kuwait J. Sci. 41 (2014), no. 3, 17-30.
M. Et, R. Çolak, Y. Altın, Strongly almost summable sequences of order α, Kuwait J. Sci. 41 (2014), no. 2, 35-47.
H. Fast, Sur la convergence statistique, Colloquium Math. 2 (1951), 241-244.
A.R. Freedman, J.J. Sember, M. Raphael, Some Cesaro-type summability spaces, Proc. Lond. Math. Soc. 37 (1978), no. 3, 508-520.
J.A. Fridy, On statistical convergence, Analysis 5 (1985), no. 4, 301-313.
J. Fridy, C. Orhan, Lacunary statistical convergence, Pacific J. Math. 160 (1993), 43-51.
A.D. Gadjiev, C. Orhan, Some approximation theorems via statistical convergence, Rocky Mountain J. Math. 32 (2002), no. 1, 129-138.
M. Ișık, K. E. Akbaș, On λ-statistical convergence of order α in probability, J. Inequal. Spec. Funct. 8 (2017), no. 4, 57-64.
M. Ișık, K.E. Et, On lacunary statistical convergence of order α in probability, AIP Conference Proceedings 1676 (2015), 020045. http://dx.doi.org/10.1063/1.4930471.
M. Ișık, K. E. Akbaș, On Asymptotically Lacunary Statistical Equivalent Sequences of Order α in Probability, ITM Web of Conferences 13 (2017), 01024. DOI: 10.1051/itmconf/20171301024.
M. Ișık, M. Et, Almost λr-statistical and strongly almost λr-convergence of order β of sequences of fuzzy numbers, J. Funct. Spaces 2015 (2015), Art. ID 451050.
G.G. Lorentz, A contribution to the theory of divergent sequences, Acta Math. 80 (1948), 167-190.
I.J. Maddox, A new type of convergence, Math. Proc. Camb. Phil. Soc. 83 (1978), 61-64.
M. Matloka, Sequences of fuzzy numbers, BUSEFAL 28 (1986), 28-37.
S.A. Mohiuddine, A. Alotaibi, M. Mursaleen, Statistical convergence of double sequences in locally solid Riesz spaces, Abstr. Appl. Anal. 2012 (2012), Art. ID 719729.
F. Nuray, Lacunary statistical convergence of sequences of fuzzy numbers, Fuzzy Sets and Systems 99 (1998), no. 3, 353-356.
H.M. Srivastava, M. Et, Lacunary statistical convergence and strongly lacunary summable functions of order α, Filomat 31 (2017), no. 6, 1573-1582.
H. Șengül, H.M. Et, On lacunary statistical convergence of order α, Acta Math. Sci. Ser. B Engl. Ed. 34 (2014), no. 2, 473-482.
H. Șengül, On Sαβ(θ) - convergence and strong Nαβ(θ,p) -summability, J. Nonlinear Sci. Appl. 10 (2017), no. 9, 5108-5115.
H. Șengül, Some Cesàro-type summability spaces defined by a modulus function of order (α,β), Commun. Fac. Sci. Univ. Ank. Sér. A1 Math. Stat. 66 (2017), no. 2, 80-90.
L.A. Zadeh, Fuzzy sets, Information and Control 8 (1965), 338-353.
DOI: https://doi.org/10.52846/ami.v51i1.1746