Existence results for singular double phase problems by topological degree
Abstract
Full Text:
PDFReferences
G. Autuori, P. Pucci, Existence of entire solutions for a class of quasilinear elliptic equations, NoDEA 20 (2013), 977-1009.
J. Berkovits, M. Tienari, Topological degree theory for some classes of multis with applications to hyperbolic and elliptic problems involving discontinuous nonlinearities, Dynam. Systems Appl. 5 (1996), 1-18.
P. Baroni, M. Colombo, G. Mingione, Harnack inequalities for double phase functionals, Nonlinear Anal. 121 (2015), 206-222.
P. Baroni, M. Colombo, G. Mingione, Regularity for general functionals with double phase, Calc. Var. PDE 57 (2018), 62.
F.E. Browder, Fixed point theory and nonlinear problems, Bull. Amer. Math. Soc. (N.S.) 9 (1983), 1-39.
H. Brezis, E.H. Lieb, A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc. 88 (1983), 486-490.
H. Brézis, Functional analysis, Sobolev spaces and partial differential equations, Universitext, Springer, New York, 2011.
F. Colasuonno, M. Squassina, Eigenvalues for double phase variational integrals, Ann. Mat. Pura Appl. 195 (2016), 1917-1959.
Y.J. Cho, Y.Q. Chen, Topological degree theory and applications, Chapman and Hall/CRC, 2006.
A. Fiscella, A double phase problem involving Hardy potentials, Applied Mathematics & Optimization 85 (2022), no. 3, 45.
B. Ge, Z.Y. Chen, Existence of infinitely many solutions for double phase problem with signchanging potential, RACSAM 113 (2019) , 3185-3196.
J.P. García Azozero, I. Peral, Hardy inequalities and some critical elliptic and parabolic problems, J. Di_erential Equations 144 (1998), 441-476.
S. Kichenassamy, L. Veron, Singular solutions of the p-Laplace equation, Math. Ann. 275 (1985), 599-615.
I.S. Kim, A topological degree and applications to elliptic problems with discontinuous nonlinearity, J. Nonlinear Sci. Appl. 10 (2017), 612-624.
J.L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, Paris, 1969.
P. Lindqvist, Notes on the p-Laplace Equation, Report 161, 2nd ed., Univ. Jyväskylä, 2017.
P. Hästö, J. Ok, Maximal regularity for local minimizers of non-autonomous functionals, J. Eur. Math. Soc. 24 (2022), no. 4, 1285-1334.
B. Son, I. Sim, Analysis of positive solutions to one-dimensional generalized double phase problems, Advances in Nonlinear Analysis 11 (2022), no. 1, 1365-1382.
J. Simon, Régularité de la solution d'une équation non linéaire dans RN, Journées d'Analyse Non Linéaire (Proc. Conf., Besan_con, 1977), Lecture Notes in Math. 665 (1978), 205-227.
B.S. Wang, G.L. Hou, B. Ge, Existence of solutions for double-phase problems by topological degree, Journal of Fixed Point Theory and Applications 23 (2021), 1-10.
E. Zeidler, Nonlinear functional analysis and its applications: II/B: nonlinear monotone operators, Springer Science & Business Media, 2013.
V.V. Zhikov, Averaging of functionals of the calculus of variations and elasticity theory, Izv. Akad. Nauk SSSR Ser. Mat. 50 (1986), 675-710.
V.V. Zhikov, On Lavrentiev's Phenomenon, Russ. J. Math. Phys. 3 (1995), 249-269.
DOI: https://doi.org/10.52846/ami.v52i1.1921